On real zeros of the derivative of the Hardy function
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 234-240.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of the zeros of the Riemann zeta-function in the short segments of the critical line (or the real zeros of Hardy's function $Z(t)$, that is the same) is one of the topical problems in the theory of the Riemann zeta-function. The study of the zeros of Hardy function's derivatives $Z^{(j)}(t)$ is the generalization of such problem. Let $T>0$. Let us define the quantity $H_j(T)$, the distance from $T$ to the nearest real zero not less than $T$ of the $j$-th derivative of the Hardy function. In the paper, an upper bound for $H_j(T)$ is proved.
Keywords: Hardy function, Riemann zeta function, exponential pair, trigonometric sum, critical line, odd order zero.
@article{CHEB_2021_22_5_a14,
     author = {Sh. A. Khayrulloev},
     title = {On real zeros of the derivative of the {Hardy} function},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {234--240},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a14/}
}
TY  - JOUR
AU  - Sh. A. Khayrulloev
TI  - On real zeros of the derivative of the Hardy function
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 234
EP  - 240
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a14/
LA  - ru
ID  - CHEB_2021_22_5_a14
ER  - 
%0 Journal Article
%A Sh. A. Khayrulloev
%T On real zeros of the derivative of the Hardy function
%J Čebyševskij sbornik
%D 2021
%P 234-240
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a14/
%G ru
%F CHEB_2021_22_5_a14
Sh. A. Khayrulloev. On real zeros of the derivative of the Hardy function. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 234-240. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a14/

[1] Karatsuba A. A., “Dzeta-funktsiya Rimana i ee nuli”, Uspekhi matematicheskikh nauk, 40:5 (1985), 19–70 | MR | Zbl

[2] Hardy G. H., “Sur les zeros de la fonction $\zeta(s)$ de Riemann”, Compt. Rend. Acad. Sci., 158 (1914), 1012–1014

[3] Hardy G. H., Littlewood J. E., “The zeros of Riemann's zeta–function on the critical line”, Math. Z., 10 (1921), 283–317 | DOI | MR

[4] Mozer Ya., “Ob odnoi summe v teorii dzeta-funktsii Rimana”, Acta arith., 1976, 31–43 | DOI | MR | Zbl

[5] Karatsuba A. A., “O rasstoyanii mezhdu sosednimi nulyami dzeta–funktsii Rimana, lezhaschimi na kriticheskoi pryamoi”, Trudy MIAN, 157, 1981, 49–63 | MR | Zbl

[6] Karatsuba A. A., “O nulyakh funktsii $\zeta(s)$ na korotkikh promezhutkakh kriticheskoi pryamoi”, Izv. AN SSSR. Ser. matem., 48:3 (1984), 569–584 | MR | Zbl

[7] Voronin S. M., Karatsuba A. A., Dzeta-funktsiya Rimana, Fizmatlit, M., 1994, 376 pp. | MR

[8] Rakhmonov Z. Kh., Khairulloev Sh. A., “Sosednie nuli dzeta-funktsii Rimana, lezhaschie na kriticheskoi pryamoi”, Doklady AN Respubliki Tadzhikistan, 52:5 (2009), 331–337

[9] Khairulloev Sh. A., “O nulyakh dzeta-funktsii Rimana na kriticheskoi pryamoi”, Vestnik Tadzhikskogo natsionalnogo universiteta, 2010, Spetsvypusk posvyaschen godu obrazovaniya i tekhnicheskikh znanii, 35–40

[10] Karatsuba A.A., “Raspredelenie nulei funktsii $\zeta(1/2+it)$”, Izv. AN SSSR. Ser. matem., 48:6 (1984), 1214–1224 | MR | Zbl

[11] Karatsuba A.A., “Plotnostnaya teorema i povedenie argumenta dzeta-funktsii Rimana”, Matem. zametki, 60:3 (1996), 448–449 | DOI | MR | Zbl

[12] Khairulloev Sh. A., “O nulyakh funktsii Khardi i ee proizvodnykh, lezhaschikh na kriticheskoi pryamoi”, Chebyshevskii sbornik, 20:4 (2019), 335–348 | DOI | MR

[13] Rakhmonov Z. Kh., Khairulloev Sh. A., “Rasstoyanie mezhdu sosednimi nulyami dzeta-funktsii Rimana, lezhaschimi na kriticheskoi pryamoi”, Doklady AN Respubliki Tadzhikistan, 49:5 (2006), 393–400

[14] Khairulloev Sh. A., “O sosednykh nulyakh proizvodnoi $n$–go poryadka funktsii Khardi”, Doklady AN RT, 62:3–4 (2019), 145–149

[15] Graham S. W., Kolesnik G., Vander Corput's Method of Exponential sums, Cambridge university press, Cambridge–New York–Port Chester–Melbourne–Sydney, 1991 | MR