On real zeros of the derivative of the Hardy function
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 234-240

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of the zeros of the Riemann zeta-function in the short segments of the critical line (or the real zeros of Hardy's function $Z(t)$, that is the same) is one of the topical problems in the theory of the Riemann zeta-function. The study of the zeros of Hardy function's derivatives $Z^{(j)}(t)$ is the generalization of such problem. Let $T>0$. Let us define the quantity $H_j(T)$, the distance from $T$ to the nearest real zero not less than $T$ of the $j$-th derivative of the Hardy function. In the paper, an upper bound for $H_j(T)$ is proved.
Keywords: Hardy function, Riemann zeta function, exponential pair, trigonometric sum, critical line, odd order zero.
@article{CHEB_2021_22_5_a14,
     author = {Sh. A. Khayrulloev},
     title = {On real zeros of the derivative of the {Hardy} function},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {234--240},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a14/}
}
TY  - JOUR
AU  - Sh. A. Khayrulloev
TI  - On real zeros of the derivative of the Hardy function
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 234
EP  - 240
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a14/
LA  - ru
ID  - CHEB_2021_22_5_a14
ER  - 
%0 Journal Article
%A Sh. A. Khayrulloev
%T On real zeros of the derivative of the Hardy function
%J Čebyševskij sbornik
%D 2021
%P 234-240
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a14/
%G ru
%F CHEB_2021_22_5_a14
Sh. A. Khayrulloev. On real zeros of the derivative of the Hardy function. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 234-240. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a14/