On the mean values of the Chebyshev function and their applications
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 198-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

Assuming the validity of the extended Riemann hypothesis for the average values of Chebyshev functions over all characters modulo $q$, the following estimate holds $$ t(x;q)=\sum_{\chi\mod q}\max_{y\leq x}|\psi(y,\chi)|\ll x+x^{1/2}q\mathscr{L}^2,\quad \mathscr{L}=\ln xq. $$ When solving a number of problems in prime number theory, it is sufficient that $t(x;q)$ admits an estimate close to this one. The best known estimates for $t(x;q)$ previously belonged to G. Montgomery, R. Vaughn, and Z. Kh. Rakhmonov. In this paper we obtain a new estimate of the form $$ t(x;q)=\sum_{\chi\mod q}\max_{y\leq x}|\psi(y,\chi)|\ll x\mathscr{L}^{28}+x^{\frac{4}{5}}q^{\frac12}\mathscr{L}^{31}+x^\frac{1}{2}q\mathscr{L}^{32}, $$ using which for a linear exponential sum with primes we prove a stronger estimate $$ S(\alpha,x)\ll xq^{-\frac12}\mathscr{L}^{33}+x^{\frac{4}{5}}\mathscr{L}^{32}+x^\frac{1}{2}q^\frac12\mathscr{L}^{33}, $$ when $\left|\alpha-\frac aq\right|\frac1{q^2}$, $(a,q)=1$. We also study the distribution of Hardy-Littlewood numbers of the form $ p + n ^ 2 $ in short arithmetic progressions in the case when the difference of the progression is a power of the prime number.
Keywords: Dirichlet character, Chebishev function, exponential sums with primes, Hardy-Littlewood numbers.
@article{CHEB_2021_22_5_a12,
     author = {Z. Kh. Rakhmonov and O. O. Nozirov},
     title = {On the mean values of the {Chebyshev} function and their applications},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {198--222},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a12/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
AU  - O. O. Nozirov
TI  - On the mean values of the Chebyshev function and their applications
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 198
EP  - 222
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a12/
LA  - ru
ID  - CHEB_2021_22_5_a12
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%A O. O. Nozirov
%T On the mean values of the Chebyshev function and their applications
%J Čebyševskij sbornik
%D 2021
%P 198-222
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a12/
%G ru
%F CHEB_2021_22_5_a12
Z. Kh. Rakhmonov; O. O. Nozirov. On the mean values of the Chebyshev function and their applications. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 198-222. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a12/

[1] Linnik Yu. V., Izbrannye trudy, Nauka, L., 1980 | MR

[2] Linnik Yu. V., “Novoe dokazatelstvo teoremy Goldbakha-Vinogradova”, Mat. sbornik, 19:1 (1946), 3–8 | Zbl

[3] Linnik Yu. V., “O vozmozhnosti edinogo metoda v nekotorykh voprosakh additivnoi i distributivnoi teorii chisel”, Dokl. AN SSSR, 49:1 (1945), 3–7 | Zbl

[4] Linnik Yu. V., “O gustote nulei $L$ – ryadov”, Izv. AN SSSR.ser. matem., 10:1 (1946), 35–46 | Zbl

[5] Karatsuba A. A., “Raspredelenie proizvedenii sdvinutykh prostykh chisel v arifmeticheskikh progressiyakh”, Doklady AN SSSR, 192:4 (1970), 724–727 | Zbl

[6] Montgomeri G., Multiplikativnaya teoriya chisel, izd-vo Mir, M., 1974

[7] Vaughan R., “Mean value theorems in prime number theory”, J. London Math. Soc. (2), 10 (1975), 153–162 | DOI | MR | Zbl

[8] Rakhmonov Z. Kh., “Raspredelenie chisel Khardi Littvluda v arifmeticheskikh progressiyakh”, Izvestiya AN SSSR. Seriya matematicheskaya, 52:1 (1989), 211–224

[9] Rakhmonov Z. Kh., “Teorema o srednem znachenii $\psi(x,\chi)$ i ee prilozheniya”, Izvestiya Rossiiskoi Akademii nauk. Seriya matematicheskaya, 57:4 (1993), 55–71 | Zbl

[10] Rakhmonov Z. Kh., “Srednie znacheniya funktsii Chebysheva”, Doklady Rossiiskoi Akademii nauk, 331:3 (1993), 281–282 | Zbl

[11] Vinogradov I. M., Izbrannye trudy, izd-vo AN SSSR, M., 1952 | MR

[12] Chudakov N. G., “On Goldbach-Vinogradov`s theorem”, Annals of Mathematics. Second Series, 48 (1947), 515–545 | DOI | MR | Zbl

[13] Chudakov N. G., Vvedenie v teoriyu $L$-funktsii Dirikhle, Gos. izd-vo tekhniko-teoreticheskoi literatury, M.–L., 1947, 204 pp. | MR

[14] Hardy G. H., Littlwood I. E., “Some problems of partitio numerorum III. On the expression of number as a sum of primes”, Acta Math., 44 (1923), 1–70 | DOI | MR

[15] Hardy G. H., Wright E. M., An introduction to theory of numbers, Clarendon Press, Oxford, 1954 | MR | Zbl

[16] Babaev G., “Zamechanie k rabote Devenporta i Kheilbrona”, UMN, 13:6(84) (1958), 63–64 | MR | Zbl

[17] Rakhmonov Z. Kh., “O raspredelenii znachenii kharakterov Dirikhle i ikh prilozheniya”, Trudy MIAN, 207, 1994, 286–296 | Zbl

[18] Weil A., “On Some Exponential Sums”, Proc. Nat. Acad. Sci. U.S.A, 34:5 (1948), 204–207 | DOI | MR | Zbl

[19] Cochrane T., “Exponential sums modulo prime powers”, Acta Arithmetica, 101 (2002), 131–149 | DOI | MR | Zbl

[20] Ismoilov D., “Otsenka summy kharakterov ot mnogochlenov”, Doklady AN Tadzh. SSR, 29:10 (1986), 567–571 | MR | Zbl

[21] Ismoilov D., “Otsenka summy kharakterov ot ratsionalnykh funktsii”, Doklady AN Tadzh. SSR, 29:11 (1986), 635–639 | MR | Zbl

[22] Ismoilov D., “Ob otsenkakh snizu summ kharakterov ot mnogochlenov po sostavnomu modulyu”, Doklady AN Tadzh. SSR, 33:8 (1990), 501–505 | MR | Zbl

[23] Ismoilov D., “Otsenki polnykh summ kharakterov ot mnogochlenov”, Trudy MIAN, 200, 1991, 171–186

[24] Ismoilov D., “A lower bound estimate for complete sums of characters of polynomials and rational functions”, Acta Math. Sinica, New Series, 9 (1993), 90–99 | DOI | MR | Zbl

[25] Ismoilov D., “Otsenki polnykh trigonometricheskikh summ”, Trudy MIAN, 207, 1994, 153–171 | Zbl

[26] Postnikov A.G., “O summe kharakterov po modulyu, ravnomu stepeni prostogo chisla”, Izvestiya AN SSSR. Seriya matematicheskaya, 19:1 (1955), 11–16 | Zbl

[27] Mardzhanishvili K. K., “Otsenka odnoi arifmeticheskoi summy”, Doklady AN SSSR, 22:7 (1939), 391–393

[28] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, 2-oe izd., Nauka, M., 1983 | MR

[29] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967

[30] Heath-Brown D. R., “Prime numbers in short intervals and a generalized Vaughan identity”, Canad. J. Math., 34 (1982), 1365–1377 | DOI | MR | Zbl