On the mean values of the Chebyshev function and their applications
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 198-222

Voir la notice de l'article provenant de la source Math-Net.Ru

Assuming the validity of the extended Riemann hypothesis for the average values of Chebyshev functions over all characters modulo $q$, the following estimate holds $$ t(x;q)=\sum_{\chi\mod q}\max_{y\leq x}|\psi(y,\chi)|\ll x+x^{1/2}q\mathscr{L}^2,\quad \mathscr{L}=\ln xq. $$ When solving a number of problems in prime number theory, it is sufficient that $t(x;q)$ admits an estimate close to this one. The best known estimates for $t(x;q)$ previously belonged to G. Montgomery, R. Vaughn, and Z. Kh. Rakhmonov. In this paper we obtain a new estimate of the form $$ t(x;q)=\sum_{\chi\mod q}\max_{y\leq x}|\psi(y,\chi)|\ll x\mathscr{L}^{28}+x^{\frac{4}{5}}q^{\frac12}\mathscr{L}^{31}+x^\frac{1}{2}q\mathscr{L}^{32}, $$ using which for a linear exponential sum with primes we prove a stronger estimate $$ S(\alpha,x)\ll xq^{-\frac12}\mathscr{L}^{33}+x^{\frac{4}{5}}\mathscr{L}^{32}+x^\frac{1}{2}q^\frac12\mathscr{L}^{33}, $$ when $\left|\alpha-\frac aq\right|\frac1{q^2}$, $(a,q)=1$. We also study the distribution of Hardy-Littlewood numbers of the form $ p + n ^ 2 $ in short arithmetic progressions in the case when the difference of the progression is a power of the prime number.
Keywords: Dirichlet character, Chebishev function, exponential sums with primes, Hardy-Littlewood numbers.
@article{CHEB_2021_22_5_a12,
     author = {Z. Kh. Rakhmonov and O. O. Nozirov},
     title = {On the mean values of the {Chebyshev} function and their applications},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {198--222},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a12/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
AU  - O. O. Nozirov
TI  - On the mean values of the Chebyshev function and their applications
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 198
EP  - 222
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a12/
LA  - ru
ID  - CHEB_2021_22_5_a12
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%A O. O. Nozirov
%T On the mean values of the Chebyshev function and their applications
%J Čebyševskij sbornik
%D 2021
%P 198-222
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a12/
%G ru
%F CHEB_2021_22_5_a12
Z. Kh. Rakhmonov; O. O. Nozirov. On the mean values of the Chebyshev function and their applications. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 198-222. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a12/