Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_5_a11, author = {S. S. Nikolaenko}, title = {Topological classification of non-compact 3-atoms with a circle action}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {185--197}, publisher = {mathdoc}, volume = {22}, number = {5}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a11/} }
S. S. Nikolaenko. Topological classification of non-compact 3-atoms with a circle action. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 185-197. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a11/
[1] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, V 2 t., Izd. dom “Udmurtskii universitet”, Izhevsk, 1999, 444 pp. | MR
[2] Fedoseev D. A., Fomenko A. T., “Nekompaktnye osobennosti integriruemykh dinamicheskikh sistem”, Fundament. i prikl. matem., 21:6 (2016), 217–243
[3] Novikov D. V., “Topologicheskie osobennosti integriruemogo sluchaya Sokolova na algebre Li e(3)”, Matem. sb., 202:5 (2011), 127–160 | DOI | MR
[4] Nikolaenko S. S., “Topological classification of the Goryachev Integrable systems in the rigid body dynamics: non-compact case”, Lobachevskii J. Math., 38:6 (2017), 1050–1060 | DOI | MR | Zbl
[5] Borisov A. V., Mamaev I. S., “Rigid Body Dynamics in Non-Euclidean Spaces”, Russ. J. Math. Phys., 23:4 (2016), 431–454 | DOI | MR | Zbl
[6] Kibkalo V. A., “Svoistvo nekompaktnosti sloev i osobennostei neevklidovoi sistemy Kovalevskoi na puchke algebr Li”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2020, no. 6, 56–59 | MR | Zbl
[7] Vedyushkina (Fokicheva) V. V., Fomenko A. T., “Integriruemye topologicheskie billiardy i ekvivalentnye dinamicheskie sistemy”, Izv. RAN. Ser. matem., 81:4 (2017), 20–67 | DOI | MR | Zbl
[8] Fiorani E., Giachetta G., Sardanashvily G., “The Liouville-Arnold-Nekhoroshev theorem for non-compact invariant manifolds”, J. Phys. A, 36:7 (2003), 101–107 | DOI | MR
[9] Kudryavtseva E. A., “Analog teoremy Liuvillya dlya integriruemykh gamiltonovykh sistem s nepolnymi potokami”, Dokl. RAN, 445:4 (2012), 383–385 | MR | Zbl
[10] Kudryavtseva E. A., Lepskii T. A., “Topologiya sloenii i teorema Liuvillya dlya integriruemykh sistem s nepolnymi potokami”, Tr. sem. po vektornomu i tenzornomu analizu, 27, 2011, 106–149
[11] Nikolaenko S. S., “Topologicheskaya klassifikatsiya gamiltonovykh sistem na dvumernykh nekompaktnykh mnogoobraziyakh”, Matem. sb., 211:8 (2020), 68–101 | DOI | MR | Zbl
[12] Fomenko A. T., “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funkts. analiz i ego pril., 22:4 (1988), 38–51 | MR | Zbl
[13] Fomenko A. T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl
[14] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii nekotorykh integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl
[15] Kudryavtseva E. A., “Hidden toric symmetry and structural stability of singularities in integrable systems”, European Journal of Mathematics, 2021, 63 pp. (published 25 October 2021) | DOI | MR
[16] Bau T., Zung N. T., “Singularities of integrable and near-integrable Hamiltonian systems”, J. Nonlinear Sci., 7:1 (1997), 1–7 | DOI | MR | Zbl
[17] Zung N. T., “A note on degenerate corank-one singularities of integrable Hamiltonian systems”, Comment. Math. Helv., 75:2 (2000), 271–283 | DOI | MR | Zbl
[18] Kudryavtseva E. A., Martynchuk N. N., “Existence of a smooth Hamiltonian circle action near parabolic orbits and cuspidal tori”, Regular and Chaotic Dynamics, 26:6 (2021), 732–741 | DOI | MR | Zbl
[19] Matveev S. V., Fomenko A. T., Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, izd-vo MGU, M., 1991, 304 pp. | MR