Generalized Laplace transform based on the differentiation operator with piecewise constant coefficients
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 172-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theory of operational calculus is developed on the basis of a differential operator with piecewise constant coefficients. A formula for the generalized Laplace transform is proposed. An inversion formula of Mellin-Laplace type is proved. The concept of a generalized original-function and a generalized image is proposed. A theorem on the isomorphism of the spaces of originals and generalized originals is proved. Using transmutation operators, it is established that the generalized Laplace transform of the generalized original coincides with the Laplace transform of the corresponding original-function. Theorems on differentiation and integration of the generalized original, theorems on homogeneity, similarity, exponential scaling, first and second shifting theorems, and others are proved. In terms of the transmutation operator, a connection between the convolution of generalized original-functions and the corresponding convolution of original-functions is established. An algorithm for solving linear differential equations with piecewise constant coefficients is presented. A solution to the heat equation with a piecewise constant coefficient at the time derivative on the real axis is found. A mixed boundary value problem for the heat equation with a piecewise constant coefficient at the time derivative on the real semiaxis is solved.
Keywords: generalized integral Laplace transform, transmutation operator, generalized original-function, Mellin-Laplace inversion formula.
@article{CHEB_2021_22_5_a10,
     author = {A. I. Nizhnikov and O. E. Yaremko and N. N. Yaremko},
     title = {Generalized {Laplace} transform based on the differentiation operator with piecewise constant coefficients},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {172--184},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a10/}
}
TY  - JOUR
AU  - A. I. Nizhnikov
AU  - O. E. Yaremko
AU  - N. N. Yaremko
TI  - Generalized Laplace transform based on the differentiation operator with piecewise constant coefficients
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 172
EP  - 184
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a10/
LA  - ru
ID  - CHEB_2021_22_5_a10
ER  - 
%0 Journal Article
%A A. I. Nizhnikov
%A O. E. Yaremko
%A N. N. Yaremko
%T Generalized Laplace transform based on the differentiation operator with piecewise constant coefficients
%J Čebyševskij sbornik
%D 2021
%P 172-184
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a10/
%G ru
%F CHEB_2021_22_5_a10
A. I. Nizhnikov; O. E. Yaremko; N. N. Yaremko. Generalized Laplace transform based on the differentiation operator with piecewise constant coefficients. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 172-184. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a10/

[1] Zaikina S.M., “Obobschenie integralnogo preobrazovaniya Laplasa i ego prilozheniya dlya resheniya nekotorykh integralnykh urvnenii”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Fiziko-matematicheskie nauki, 2014, no. 1(34), 19–24 | DOI | Zbl

[2] Romanovskii P. I., Ryady Fure. Teoriya polya. Analiticheskie i spetsialnye funktsii. Preobrazovaniya Laplasa, Nauka, M., 1980, 336 pp.

[3] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp.

[4] Yaremko O. E., Yaremko N. N., “Obobschennoe dvoinoe preobrazovanie Laplasa i ego primeneniya dlya resheniya uravnenii v chastnykh proizvodnykh”, Prikladnaya matematika i Fizika, 52:4 (2020), 239–245 | DOI

[5] Brychkov Yu. A. , Prudnikov A. P. , Shishov V. S., “Operational calculus”, Itogi Nauki i Tekhn. Ser. Mat. Anal., 16, VINITI, M., 1979, 99–148 ; J. Soviet Math., 15:6 (1981), 733–765 | MR | DOI | Zbl

[6] Ermolova, N.Y., Tirkkonen, “O. Laplace Transform of Product of Generalized Marcum Q, Bessel I, and Power Functions With Applications”, IEEE Transactions on Signal Processing, 2014, 2938–2944 | MR | Zbl

[7] Jeffreys H. and Jeffreys B., Methods of Mathematical Physics, 3rd ed., Cambridge Univ. Press, 1956 | MR | Zbl

[8] Ganzha E.I., “On Laplace and Dini transformations for multidimensional equations with a decomposable principal symbol”, Programming and Computer Software, 38 (2012), 150–155 | DOI | MR | Zbl

[9] Gonzalez-Acuna, Rafael G., Gutierrez-Vega, Julio C., “Transition integral transform obtained from generalization of the Fourier transform”, Ain Shams Engineering Journal, 10:4 (2019), 841–845 | DOI

[10] Jarad Fahd , Abdeljawad Thabet, “A modified Laplace transform for certain generalized fractional operators”, Results in Nonlinear Analysis, 1:2 (2018), 88–98 | MR

[11] Koepf Wolfram, Kim Insuk, Rathie Arjun K., “On a New Class of Laplace-Type Integrals Involving Generalized Hypergeometric Functions”, Axioms, 8:3 (2019), 87 | DOI | MR | Zbl

[12] M.M. Meerschaert, J. Mortensen, S.W. Wheatcraft, “Fractional Vector Calculus for Fractional Advection-Dispersion”, Physica A, 367 (2006), 181–190 | DOI

[13] Mainardi F., Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, UK, 2010, 347 pp. | MR

[14] Miller K.S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, Inc., New York, NY, USA, 1993, 366 pp. | MR | Zbl

[15] Napalkov V. V., Mullabaeva A. U., “On one class of differential operators and their application”, Proceedings of the Steklov Institute of Mathematics, 288 (2015), 142–155 | DOI | MR

[16] M. M. Rashidi, “The modified differential transforms method for solving MHD boundary-layer equations”, Comput. Phys. Commun., 180 (2009), 2210–2217 | DOI | MR | Zbl

[17] Shishkina E. L., Sitnik S. M., Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics, Elsevier, 2020 | MR | Zbl

[18] Tsarev S.P., “Generalized Laplace Transformations and Integration of Hyperbolic Systems of Linear Partial Differential Equations”, Proc. ISSAC 2005, ed. Labahn G., ACM Press, 2005, 325–331 | MR | Zbl

[19] Sitnik Sergei M., Yaremko Oleg, Yaremko Natalia, “Transmutation Operators and Applications”, Transmutation Operators Boundary Value Problems, Springer Nature Switzerland, 2020, 447–466 | MR