Estimates of short exponential sums with primes in major arcs
Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 200-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a number of additive problems with almost equal summands, in addition to the estimates for short exponential sums with primes of the form $$ S_k(\alpha;x,y)=\sum_{x-y\le x}\Lambda(n)e(\alpha n^k), $$ in minor arcs, we need to have an estimate of these sums in major arcs, except for a small neighborhood of their centers. We also need to have an asymptotic formula on a small neighborhood of the centers of major arcs. In this paper, using the second moment of Dirichlet $L$-functions on the critical line, we obtained a nontrivial estimate of the form $$ S_k(\alpha;x,y)\ll y\mathscr{L}^{-A}, $$ for $S_k(\alpha;x,y)$ in major arcs $M(\mathscr{L}^b)$, $\tau=y^5x^{-2}\mathscr{L}^{-b_1}$, $\mathscr{L} =\ln xq$, except for a small neighborhood of their centers $|\alpha-\frac{a}{q}|>\left(2\pi k^2x^{k-2}y^2\right)^{-1}$, when $y\ge x^{1-\frac{1}{2k-1+\eta_k}}\mathscr{L}^{c_k}$, where $$ \eta_k=\frac{2}{4k-5+2\sqrt{(2k-2)(2k-3)}}, c_k= \frac{2A+22+\left(\frac{2\sqrt{2k-3}}{\sqrt{2k-2}}-1\right)b_1}{2\sqrt{(2k-2)(2k-3)}-(2k-3)}, $$ and $A$, $b_1$, $b$ are arbitrary fixed positive numbers. Furthermore, and we also proved an asymptotic formula on a small neighborhood of the centers of major arcs.
Keywords: Short exponential sum with primes, major arcs, density theorem, Dirichlet $L$-function.
@article{CHEB_2021_22_4_a9,
     author = {Z. Kh. Rakhmonov},
     title = {Estimates of short exponential sums with primes in major arcs},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {200--224},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a9/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
TI  - Estimates of short exponential sums with primes in major arcs
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 200
EP  - 224
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a9/
LA  - ru
ID  - CHEB_2021_22_4_a9
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%T Estimates of short exponential sums with primes in major arcs
%J Čebyševskij sbornik
%D 2021
%P 200-224
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a9/
%G ru
%F CHEB_2021_22_4_a9
Z. Kh. Rakhmonov. Estimates of short exponential sums with primes in major arcs. Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 200-224. http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a9/

[1] Vinogradov I. M., Izbrannye trudy, izd-vo AN SSSR, M., 1952 | MR

[2] Vinogradov I. M., Karatsuba A. A., “Metod trigonometricheskikh summ v teorii chisel”, Trudy MIAN SSSR, 77, 1984, 4–30 | MR

[3] Haselgrove C. B., “Some theorems in the analitic theory of number”, J. London Math. Soc., 26 (1951), 273–277 | DOI | MR | Zbl

[4] Statulyavichus V., “O predstavlenii nechetnykh chisel summoyu trekh pochti ravnykh prostykh chisel”, Vilnyus. Uchenye trudy universiteta. Ser. mat., fiz. i khim. n., 1955, no. 2, 5–23

[5] Pan Cheng-dong, Pan Cheng-biao, “On estimations of trigonometric sums over primes in short intervals (III)”, Chinese Ann. of Math., 2 (1990), 138–147 | MR | Zbl

[6] Zhan T., “On the Representation of large odd integer as a sum three almost equal primes”, Acta Math Sinica. New ser., 7:3 (1991), 135–170 | MR

[7] Liu J., Zhan T., “Estimation of exponential sums over primes in short intervals I”, Mh Math., 127 (1999), 27–41 | DOI | MR | Zbl

[8] Liu J, Zhan T., “Hua's Theorem on Prime Squares in Short Intervals”, Acta Mathematica Sinica. English Series., 16:4 (2000), 669–690 | DOI | MR | Zbl

[9] Liu J., Lu G., Zhan T., “Exponential sums over primes in short intervals”, Science in China: Series A Mathematics, 49:5 (2006), 611–619 | DOI | MR | Zbl

[10] Hua L. K., “Some results in the additive prime number theory”, Quart. J. Math., 9:1 (1938), 68–80 | DOI | MR | Zbl

[11] Liu J., Zhan T., “Estimation of exponential sums over primes in short intervals II”, Analytic Number Theory, Proceedings of a Conference in Honor of Heini Halberstam, Birkhauser, 1996, 571–606 | MR | Zbl

[12] Jutila M., “Mean value etstimates for exponential sums with applications to $L$-functions”, Acta Arithmetica, 57:2 (1991), 93–114 | DOI | MR | Zbl

[13] Kumchev A. V., “On Weyl sums over primes in short intervals”, Arithmetic in Shangrila, Proceedings of the 6th China-Japan Seminar on Number Theory, Series on Number Theory and Its Applications, 9, World Scientific, Singapore, 2012, 116–131 | MR

[14] Yao Y., “Sums of nine almost equal prime cubes”, Frontiers of Mathematics in China, 9:5 (2014), 1131–1140 | DOI | MR | Zbl

[15] Rakhmonov Z. Kh., Rakhmonov F. Z., “Otsenka korotkikh kubicheskikh trigonometricheskikh summ v malykh dugakh”, Doklady Akademii nauk Respubliki Tadzhikistan, 59:7-8 (2016), 273–277

[16] Rakhmonov Z. Kh., Rakhmonov F. Z., “Korotkie kubicheskie summy prostymi chislami”, Trudy MIAN, 296, 2016, 220–242 | DOI

[17] Rakhmonov Z. Kh., Rakhmonov F. Z., “Summa korotkikh dvoinykh trigonometricheskikh summ”, Doklady Akademii nauk Respubliki Tadzhikistan, 56:11 (2013), 853–860

[18] Rakhmonov Z.Kh., Rakhmonov F.Z., “Summa korotkikh trigonometricheskikh summ s prostymi chislami”, Doklady Rossiiskoi Akademii nauk, 459:2 (2014), 156–157 | DOI | Zbl

[19] Rakhmonov Z. Kh., Zamonov B. M., “Korotkie kubicheskie dvoinye trigonometricheskie summy, s «dlinnym» sploshnym summirovaniem”, Izvestiya Akademii nauk Respubliki Tadzhikistan. Otdelenie fiziko-matematicheskikh, khimicheskikh, geologicheskikh i tekhnicheskikh nauk, 2014, no. 4(157), 7–23

[20] Rakhmonov Z. Kh., Rakhmonov F. Z, Zamonov B. M., “Otsenka korotkikh kubicheskikh dvoinykh trigonometricheskikh summ s «dlinnym» sploshnym summirovaniem”, Chebyshevskii sbornik, 17:1 (2016), 217–231 | MR | Zbl

[21] Rane V. V., “On the mean square value of Dirichlet $L$-series”, J. London Math. Soc. (2), 21 (1980), 203–215 | DOI | MR | Zbl

[22] Zhan T., “On the Mean Square of Dirichlet $L$-Functions”, Acta Mathematica Sinica. New Series, 8:2 (1992), 204–224 | DOI | MR | Zbl

[23] Rakhmonov Z. Kh., Sobirov A. A., Fozilova P. M., “Povedenie korotkikh kubicheskikh trigonometricheskikh summ s prostymi chislami v maloi okrestnosti tsentra bolshikh dug”, Doklady Akademii nauk Respubliki Tadzhikistan, 63:5-6 (2020), 279–288

[24] Rakhmonov Z. Kh., Sobirov A. A., Fozilova P. M., “Otsenka korotkikh kubicheskikh trigonometricheskikh summ s prostymi chislami v bolshie dugi”, Doklady Akademii nauk Respubliki Tadzhikistan, 63:7-8 (2020) | Zbl

[25] Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., Teoriya kratnykh trigonometricheskikh summ, Nauka, M., 1987

[26] Devenport G., Multiplikativnaya teoriya chisel, Nauka, M., 1981

[27] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967

[28] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, 2-oe izd., Nauka, M., 1983 | MR

[29] Vinogradov I. M., Osnovy teorii chisel, 9-oe izd., Nauka, M., 1981 | MR