Estimates of short exponential sums with primes in major arcs
Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 200-224

Voir la notice de l'article provenant de la source Math-Net.Ru

For a number of additive problems with almost equal summands, in addition to the estimates for short exponential sums with primes of the form $$ S_k(\alpha;x,y)=\sum_{x-y\le x}\Lambda(n)e(\alpha n^k), $$ in minor arcs, we need to have an estimate of these sums in major arcs, except for a small neighborhood of their centers. We also need to have an asymptotic formula on a small neighborhood of the centers of major arcs. In this paper, using the second moment of Dirichlet $L$-functions on the critical line, we obtained a nontrivial estimate of the form $$ S_k(\alpha;x,y)\ll y\mathscr{L}^{-A}, $$ for $S_k(\alpha;x,y)$ in major arcs $M(\mathscr{L}^b)$, $\tau=y^5x^{-2}\mathscr{L}^{-b_1}$, $\mathscr{L} =\ln xq$, except for a small neighborhood of their centers $|\alpha-\frac{a}{q}|>\left(2\pi k^2x^{k-2}y^2\right)^{-1}$, when $y\ge x^{1-\frac{1}{2k-1+\eta_k}}\mathscr{L}^{c_k}$, where $$ \eta_k=\frac{2}{4k-5+2\sqrt{(2k-2)(2k-3)}}, c_k= \frac{2A+22+\left(\frac{2\sqrt{2k-3}}{\sqrt{2k-2}}-1\right)b_1}{2\sqrt{(2k-2)(2k-3)}-(2k-3)}, $$ and $A$, $b_1$, $b$ are arbitrary fixed positive numbers. Furthermore, and we also proved an asymptotic formula on a small neighborhood of the centers of major arcs.
Keywords: Short exponential sum with primes, major arcs, density theorem, Dirichlet $L$-function.
@article{CHEB_2021_22_4_a9,
     author = {Z. Kh. Rakhmonov},
     title = {Estimates of short exponential sums with primes in major arcs},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {200--224},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a9/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
TI  - Estimates of short exponential sums with primes in major arcs
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 200
EP  - 224
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a9/
LA  - ru
ID  - CHEB_2021_22_4_a9
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%T Estimates of short exponential sums with primes in major arcs
%J Čebyševskij sbornik
%D 2021
%P 200-224
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a9/
%G ru
%F CHEB_2021_22_4_a9
Z. Kh. Rakhmonov. Estimates of short exponential sums with primes in major arcs. Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 200-224. http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a9/