On the hyperbolic parameter of a two-dimensional lattice of comparisons
Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 168-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the refinement of the results of V. A. Bykovsky on the estimation of the error of approximate integration on the Korobov class $E_s^\alpha$ for two-dimensional parallelepipedal grids. The necessary information from the theory of continued fractions and Euler brackets is given. With the help of the theory of best approximations of the second kind, the Bykovsky set consisting of local minima of the lattice of Dirichlet approximations for a rational number is described. The Bykovsky set for a two-dimensional lattice of linear comparison solutions is explicitly described. A formula is obtained expressing the hyperbolic parameter of this lattice in terms of denominators of suitable fractions and Euler brackets and allowing it to be calculated in $O(N)$ arithmetic operations. Estimates of the hyperbolic zeta function of a two-dimensional lattice of linear comparison solutions are obtained in terms of the Bykovsky sum, which is a partial sum of the zeta series for the hyperbolic zeta function of the lattice. The partial sum is taken by the Bykovsky set. For the Bykovsky sum, estimates are obtained from above and from below, from which it follows that the main term for these sums is the sum of the $\alpha$-th degrees of the elements of the continued fraction for $\frac{a}{N}$ divided by $N^\alpha$. In conclusion, the current directions of research on this topic are noted.
Keywords: quadratic fields, approximation of algebraic grids, quality function, generalized parallelepipedal grid, Bykovsky set, Bykovsky sum, local lattice minima, minimal comparison solutions.
@article{CHEB_2021_22_4_a7,
     author = {A. N. Kormacheva and N. N. Dobrovol'skii and I. Yu. Rebrova and N. M. Dobrovol'skii},
     title = {On the hyperbolic parameter of a two-dimensional lattice of comparisons},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {168--182},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a7/}
}
TY  - JOUR
AU  - A. N. Kormacheva
AU  - N. N. Dobrovol'skii
AU  - I. Yu. Rebrova
AU  - N. M. Dobrovol'skii
TI  - On the hyperbolic parameter of a two-dimensional lattice of comparisons
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 168
EP  - 182
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a7/
LA  - ru
ID  - CHEB_2021_22_4_a7
ER  - 
%0 Journal Article
%A A. N. Kormacheva
%A N. N. Dobrovol'skii
%A I. Yu. Rebrova
%A N. M. Dobrovol'skii
%T On the hyperbolic parameter of a two-dimensional lattice of comparisons
%J Čebyševskij sbornik
%D 2021
%P 168-182
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a7/
%G ru
%F CHEB_2021_22_4_a7
A. N. Kormacheva; N. N. Dobrovol'skii; I. Yu. Rebrova; N. M. Dobrovol'skii. On the hyperbolic parameter of a two-dimensional lattice of comparisons. Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 168-182. http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a7/

[1] Bykovskii V. A., “O pogreshnosti teoretiko-chislovykh kvadraturnykh formul”, Chebyshevskii sbornik, 3:2(4) (2002), 27–33 | MR | Zbl

[2] G. F. Voronoi, “Ob odnom obobschenii algoritma nepreryvnykh drobei”, G. F. Voronoi. Sobranie sochinenii v trekh tomakh, v. 1, 197–391 | MR

[3] Vronskaya G. T., Dobrovolskii N. N., Otkloneniya ploskikh setok, monografiya, ed. N. M. Dobrovolskii, Tula, 2012

[4] O. A. Gorkusha, N. M. Dobrovolskii, “Ob otsenkakh giperbolicheskoi dzeta-funktsii reshetok”, Chebyshevskii sbornik, 6:2(14) (2005), 130–138 | MR

[5] B. N. Delone, Peterburgskaya shkola teorii chisel, Izdatelstvo Akademii nauk SSSR, M.–L., 1947, 422 pp.

[6] B. N. Delone, D. K. Faddeev, “Teoriya irratsionalnostei tretei stepeni”, Tr. Matem. in-ta im. V. A. Steklova, 11, Izd-vo AN SSSR, M.-L., 1940, 3–340

[7] Dobrovolskii N. M., Esayan A. R., Pikhtilkov S. A., Rodionova O. V., Ustyan A. E., “Ob odnom algoritme poiska optimalnykh koeffitsientov”, Izvestiya TulGU. Ser. Matematika. Mekhanika. Informatika, 5:1 (1999), 51–71 | MR

[8] Dobrovolskii N. M., Esayan A. R., Rebrova I. Yu., “Ob odnom rekursivnom algoritme dlya reshetok”, Teoriya priblizhenii i garmonicheskii analiz, Tez. dokl. Mezhdunar. konf. (Tula, 1998)

[9] Dobrovolskii N. M., Esayan A. R., Rebrova I. Yu., “Ob odnom rekursivnom algoritme dlya reshetok”, Izvestiya TulGU. Ser. Matematika. Mekhanika. Informatika, 5:3 (1999), 38–51 | MR

[10] Devenport G., Vysshaya arifmetika, Nauka, M., 1965, 176 pp.

[11] Kassels D., Vvedenie v geometriyu chisel, Mir, M., 1965, 422 pp.

[12] Korobov N. M., “Vychislenie kratnykh integralov metodom optimalnykh koeffitsientov”, Vestn. Mosk. un-ta, 1959, no. 4, 19–25

[13] Korobov N. M., “Svoistva i vychislenie optimalnykh koeffitsientov”, DAN SSSR, 132:5 (1960), 1009–1012 | Zbl

[14] Mikhlyaeva A. V., “Priblizhenie kvadratichnykh algebraicheskikh reshetok i setok tselochislennymi reshetkami i ratsionalnymi setkami”, Chebyshevckii sbornik, 19:3 (2018), 241–256 | DOI | Zbl

[15] Mikhlyaeva A. V., “Funktsiya kachestva dlya priblizheniya kvadratichnykh algebraicheskikh setok”, Chebyshevckii sbornik, 20:1 (2019), 307–312 | Zbl

[16] Sushkevich A. K., Teoriya chisel, Iz-vo Kharkovskogo gos. un-ta im. A. M. Gorkogo, Kharkov, 1956, 204 pp. | MR

[17] A. Ya. Khinchin, Tsepnye drobi, Fizmatlit, M., 1960, 112 pp.