Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_4_a5, author = {V. I. Ivanov}, title = {Properties and application of a positive translation operator for $(k,1)${-Generalized} {Fourier} transform}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {136--152}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a5/} }
TY - JOUR AU - V. I. Ivanov TI - Properties and application of a positive translation operator for $(k,1)$-Generalized Fourier transform JO - Čebyševskij sbornik PY - 2021 SP - 136 EP - 152 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a5/ LA - ru ID - CHEB_2021_22_4_a5 ER -
V. I. Ivanov. Properties and application of a positive translation operator for $(k,1)$-Generalized Fourier transform. Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 136-152. http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a5/
[1] Dunkl C. F., “Hankel transforms associated to finite reflections groups”, Contemp. Math., 138, 1992, 123–138 | DOI | MR | Zbl
[2] Rösler M., “Dunkl operators. Theory and applications”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1817, Springer-Verlag, 2002, 93–135 | DOI | MR
[3] Salem Ben Saïd, Kobayashi T., Ørsted B., “Laguerre semigroup and Dunkl operators”, Compos. Math., 148:4 (2012), 1265–1336 | DOI | MR | Zbl
[4] Kobayashi T., Mano G., The Schrödinger model for the minimal representation of the indefinite orthogonal group $O(p;q)$, Memoirs of the American Mathematical Societies, 212, no. 1000, Amer. Math. Soc., Providence, RI, 2011 | MR
[5] Rösler M., “Generalized Hermite polynomials and the heat equation for Dunkl operators”, Comm. Math. Phys., 192 (1998), 519–542 | DOI | MR | Zbl
[6] Rösler M., “A positive radial product formula for the Dunkl kernel”, Trans. Amer. Math. Soc., 355 (2003), 2413–2438 | DOI | MR | Zbl
[7] Gorbachev D. V., Ivanov V. I., Tikhonov S. Yu., “Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx., 49:3 (2019), 555–605 | DOI | MR | Zbl
[8] Salem Ben Sa\"{i}d, Deleaval L., “Translation operator and maximal function for the $(k,1)$-generalized Fourier transform”, Journal of Functional Analysis, 279:8 (2020), 108706 | DOI | MR | Zbl
[9] Gorbachev D. V., Ivanov V. I., Tikhonov S. Yu., “Pitt's Inequalities and Uncertainty Principle for Generalized Fourier Transform”, International Mathematics Research Notices, 2016:23 (2016), 7179–7200 | DOI | MR | Zbl
[10] Ivanov V. I., “Ogranichennyi operator sdviga dlya (k, 1)-obobschennogo preobrazovaniya Fure”, Chebyshevskii sbornik, 21:4 (2020), 85–96 | DOI | MR | Zbl
[11] Levitan B. M., Sargsyan I. S., Vvedenie v spektralnuyu teoriyu, Nauka, M., 1970
[12] Grafacos L., Classical Fourier Analysis, Graduate Texts in Mathematics, 249, Springer Science+Business Media, LLC, New York, 2008 | DOI | MR
[13] Beitmen G., Erdeii A., Tablitsy integralnykh preobrazovanii, v. 2, Preobrazovaniya Besselya. Integraly, Nauka, M., 1970
[14] Thangavelu S., Xu Y., “Convolution operator and maximal function for Dunkl transform”, J. d'Analyse. Math., 97 (2005), 25–55 | DOI | MR