Nikol'skii constants for compact homogeneous spaces
Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 100-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the sharp $L^{p}$-Nikol'skii constants for the case of Riemannian symmetric manifolds $\mathbb{M}^{d}$ of rank $1$. These spaces are fully classified and include the unit Euclidean sphere $\mathbb{S}^{d}$, as well as the projective spaces $\mathbb{P}^{d}(\mathbb{R})$, $\mathbb{P}^{d}(\mathbb{C})$, $\mathbb{P}^{d}(\mathbb{H})$, $\mathbb{P}^{16}(\mathrm{Ca})$. There is a common harmonic analysis on these manifolds, in particular, the subspaces of polynomials $\Pi_{n}(\mathbb{M}^{d})$ of order at most $n$ are defined. In the general case, the sharp $ L^{p}$-Nikol'skii constant for the subspace $Y\subset L^{\infty}$ is defined by the equality $$ \mathcal{C}(Y,L^{p})=\sup_{f\in (Y\cap L^{p})\setminus \{0\}}\frac{\|f\|_{\infty}}{\|f\|_{p}}. $$ V.A. Ivanov (1983) gave the asymptotics $$ \mathcal{C}(\Pi_{n}(\mathbb{M}^{d}),L^{p}(\mathbb{M}^{d}))\asymp n^{d/p}, n\to \infty, p\in [1,\infty). $$ For the case of a sphere, this result was significantly improved by the author together with F. Dai and S. Tikhonov (2020): $$ \mathcal{C}(\Pi_{n}(\mathbb{S}^{d}),L^{p}(\mathbb{S}^{d}))= \mathcal{C}(\mathcal{E}_{1}^{d},L^{p}(\mathbb{R}^{d}))n^{d/p}(1+o(1)), n\to \infty, p\in (0,\infty), $$ where $\mathcal{E}_{1}^{d}$ is the set of entire functions of exponential spherical type at most $1$ bounded on $\mathbb{R}^{d}$. M.I. Ganzburg (2020) transferred this equality to the case of the multidimensional torus $\mathbb{T}^{d}$ and trigonometric polynomials. For $d=1$, these results follow from the fundamental work of E. Levin and D. Lubinsky (2015). In a joint work of the author and I.A. Martyanov (2020), the following explicit boundaries of the spherical Nikol'skii constant were proved, which refine the above results for $p\ge 1$: $$ n^{d/p}\le \frac{\mathcal{C}(\Pi_{n}(\mathbb{S}^{d}),L^{p}(\mathbb{S}^{d}))} {\mathcal{C}(\mathcal{E}_{1}^{d},L^{p}(\mathbb{R}^{d}))}\le \bigl(n+2\lceil \tfrac{d+1}{2p}\rceil\bigr)^{d/p}, n\in \mathbb{Z}_{+}, p\in [1,\infty). $$ This result was proved using a one-dimensional version of the problem for the case of a periodic Gegenbauer weight. The development of this method allows us to prove the following general result: for $p\ge 1$ $$ n^{d/p}\le \frac{\mathcal{C}(\Pi_{n}(\mathbb{M}^{d}),L^{p}(\mathbb{M}^{d}))} {\mathcal{C}(\mathcal{E}_{1}^{d},L^{p}(\mathbb{R}^{d}))}\le \bigl(n+\lceil \tfrac{\alpha_{d}+3/2}{p}\rceil+\lceil \tfrac{\beta_{d}+1/2}{p}\rceil\bigr)^{d/p}, $$ where $\alpha_{d}=d/2-1$, $\beta_{d}=d/2-1$, $-1/2$, $0$, $1$, $3$ respectively for $\mathbb{S}^{d}$, $\mathbb{P}^{d}(\mathbb{R})$, $\mathbb{P}^{d}(\mathbb{C})$, $\mathbb{P}^{d}(\mathbb{H})$, $\mathbb{P}^{16}(\mathrm {Ca})$. The proof of this result is based on the connection of harmonic analysis on $\mathbb{M}^{d}$ with Jacobi analysis on $[0,\pi] $ and $\mathbb{T}$ with periodic weight $\bigl|2\sin \tfrac{t}{2}\bigr|^{2\alpha+1}\bigl|\cos \tfrac{t}{2}\bigr|^{2\beta+1}$. Also we give related results for the trigonometric Nikol'skii constants in $L^{p}$ on $\mathbb{T}$ with Jacobi weight and Nikol'skii constants for entire functions of exponential type in $L^{p}$ on $\mathbb{R}$ with power weight.
Keywords: Nikolskii constant, homogeneous space, polynomial, entire function of exponential type, Jacobi weight.
@article{CHEB_2021_22_4_a3,
     author = {D. V. Gorbachev},
     title = {Nikol'skii constants for compact homogeneous spaces},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {100--113},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a3/}
}
TY  - JOUR
AU  - D. V. Gorbachev
TI  - Nikol'skii constants for compact homogeneous spaces
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 100
EP  - 113
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a3/
LA  - ru
ID  - CHEB_2021_22_4_a3
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%T Nikol'skii constants for compact homogeneous spaces
%J Čebyševskij sbornik
%D 2021
%P 100-113
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a3/
%G ru
%F CHEB_2021_22_4_a3
D. V. Gorbachev. Nikol'skii constants for compact homogeneous spaces. Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 100-113. http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a3/

[1] Arestov V.V., Deikalova M.V., “Neravenstvo Nikolskogo dlya algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Tr. IMM UrO RAN, 19, no. 2, 2013, 34–47

[2] Arestov V., Deikalova M., “Nikol'skii inequality between the uniform norm and $L_{q}$-norm with Jacobi weight of algebraic polynomials on an interval”, Anal. Math., 42:2 (2016), 91–120 | DOI | MR | Zbl

[3] Vo Tkhi Kuk, “Operatory obobschennogo sdviga v prostranstvakh $L_{p}$ na tore s vesom Yakobi i ikh primenenie”, Izv. TulGU. Estestvennye nauki, 2012, no. 1, 17–43

[4] Dai F., Gorbachev D., Tikhonov S., “Nikolskii constants for polynomials on the unit sphere”, J. d'Anal. Math., 140:1 (2020), 161–185 | DOI | MR | Zbl

[5] Gangolli R., “Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters”, Ann. Inst. H. Poincaré, 3:2 (1967), 121–226 | MR | Zbl

[6] Ganzburg M.I., “Sharp constants of approximation theory. I. Multivariate Bernstein–Nikolskii type inequalities”, J. Fourier Anal. Appl., 26:11 (2020) | MR | Zbl

[7] Gorbachev D.V., “Integralnaya zadacha Konyagina i $(C,L)$-konstanty Nikolskogo”, Tr. IMM UrO RAN, 11, no. 2, 2005, 72–91 | Zbl

[8] Gorbachev D.V., Martyanov I.A., “Granitsy polinomialnykh konstant Nikolskogo v $L^{p}$ s vesom Gegenbauera”, Tr. IMM UrO RAN, 26, no. 4, 2020, 126–137

[9] Ivanov V.A., “O neravenstvakh Bernshteina–Nikolskogo i Favara na kompaktnykh odnorodnykh prostranstvakh ranga $1$”, UMN, 38:3 (231) (1983), 179–180 | MR | Zbl

[10] Ivanov V.A., “Tochnye rezultaty v zadache o neravenstve Bernshteina–Nikolskogo na kompaktnykh simmetricheskikh rimanovykh prostranstvakh ranga 1”, Tr. MIAN SSSR, 194, 1992, 111–119 | Zbl

[11] Jaming P., Speckbacher M., “Concentration estimates for finite expansions of spherical harmonics on two-point homogeneous spaces via the large sieve principle”, Sampl. Theory Signal Process. Data Anal., 19:9 (2021) | MR

[12] Levin E., Lubinsky D., “Asymptotic behavior of Nikolskii constants for polynomials on the unit circle”, Comput. Methods Funct. Theory, 15:3 (2015), 459–468 | DOI | MR | Zbl

[13] Martyanov I.A., “Konstanta Nikolskogo dlya trigonometricheskikh polinomov s periodicheskim vesom Gegenbauera”, Chebyshevskii sbornik, 21:1 (2020), 247–258 | DOI | MR

[14] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964

[15] Chertova D.V., “Teoremy Dzheksona v prostranstvakh $L_{p}$, $1\le p\le 2$, s periodicheskim vesom Yakobi”, Izv. TulGU. Estestvennye nauki, 2009, no. 1, 5–27 | MR