Defining equations of deformation of materials with double anisotropy
Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 370-384.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mechanical properties of composite and polymer materials widely used in engineering are analyzed. It is confirmed that the absolute majority of them have structural anisotropy of different classes. In addition, it is shown that these structural materials often exhibit a sensitivity of the deformation characteristics to the type of stress state. Due to the fact that classical mathematical models describing the states of such materials lead to gross errors in the calculation of structural elements, and the well-known, specially developed theories for them are quite contradictory and have significant drawbacks, the authors propose an energy model of the determining relations for media with structural and deformation anisotropies. This model is based on the use of the normalized stress tensor space, which has an undoubted advantage over the singular functions and parameters having an infinite interval of change, which are used in the known versions of the theories of deformation of materials with double anisotropy. As a specific class of structural anisotropy, orthotropic materials are accepted, for which the strain potential defined in the main structural axes is postulated. By differentiating the formulated potential according to the recommendations of the Castigliano rules, the equations of connection of two tensors of the second rank - strains and stresses - are established. It is shown that these equations have a nonlinear form, which aggravates the problem of uniqueness of solutions to boundary value problems. To identify the resulting model of the defining equations, we recommend an experimental program that includes mechanical tests for uniaxial tension and compression along the main axes of the anisotropy of the material, as well as for a net shift in the three planes of orthotropy. The main technical constants of a number of composite and polymer materials widely used in engineering are given. On the basis of the use of the postulate about the positive certainty of the energy surface, the consistency of the proposed strain potential is verified. Using this test, we prove the uniqueness theorem for solving boundary value problems in the mechanics of a deformable solid. Taking into account the rules of transformation of the components of the second-rank tensors when the axes of the selected coordinate system are rotated, it is shown that the stresses calculated in the main axes of orthotropy are recalculated in the new system according to traditional formulas.
Keywords: deformation anisotropy, structural orthotropy, strain potential, second-rank tensors, uniqueness theorem, Drucker postulate, principal axes of orthotropy.
@article{CHEB_2021_22_4_a21,
     author = {A. A. Treschev and Yu. A. Zavyalova and M. A. Lapshina and A. E. Gvozdev and O. V. Kuzovleva and E. S. Krupitsyn},
     title = {Defining equations of deformation of materials with double anisotropy},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {370--384},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a21/}
}
TY  - JOUR
AU  - A. A. Treschev
AU  - Yu. A. Zavyalova
AU  - M. A. Lapshina
AU  - A. E. Gvozdev
AU  - O. V. Kuzovleva
AU  - E. S. Krupitsyn
TI  - Defining equations of deformation of materials with double anisotropy
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 370
EP  - 384
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a21/
LA  - ru
ID  - CHEB_2021_22_4_a21
ER  - 
%0 Journal Article
%A A. A. Treschev
%A Yu. A. Zavyalova
%A M. A. Lapshina
%A A. E. Gvozdev
%A O. V. Kuzovleva
%A E. S. Krupitsyn
%T Defining equations of deformation of materials with double anisotropy
%J Čebyševskij sbornik
%D 2021
%P 370-384
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a21/
%G ru
%F CHEB_2021_22_4_a21
A. A. Treschev; Yu. A. Zavyalova; M. A. Lapshina; A. E. Gvozdev; O. V. Kuzovleva; E. S. Krupitsyn. Defining equations of deformation of materials with double anisotropy. Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 370-384. http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a21/

[1] A.A. Treschev, Teoriya deformirovaniya i prochnosti raznosoprotivlyayuschikhsya materialov, TulGU, Tula, 2020, 359 pp.

[2] D.W. Schmueser, “Nonlinear Stress-Strain and Strength Response of Axisymmetric Bimodulus Composite Material Shells”, AIAA Journal, 21:12 (1983), 1742–1747 | DOI

[3] L.N. Reddy, C.W. Bert, “On the Behavior of Plates Laminated of Bimodulus Composite Materials”, ZAMM, 62:6 (1982), 213–219 | DOI | Zbl

[4] R.M. Jones, “A Nonsymmetric Compliance Matrix Approach to Nonlinear Multimodulus Ortotropic Materials”, AIAA Journal, 15:10 (1977), 1436–1443 | DOI

[5] R.M. Jones, “Modeling Nonlinear Deformation of Carbon-Carbon Composite Material”, AIAA Journal, 18:8 (1980), 995–1001 | DOI

[6] R.M. Jones, “Bucling of Stiffened Multilayered Circular Shells with Different Ortotropic Moduli in Tension and Compression”, AIAA Journal, 9:5 (1971), 917–923 | DOI | Zbl

[7] A.F. Kregers, R.D. Maksimov, R.P. Turtsinysh, “Nelineinaya polzuchest tkanevogo stekloplastika pri nekotorykh vidakh slozhnogo napryazhennogo sostoyaniya”, Mekhanika polimerov, 1973, no. 2, 212–218

[8] E.V. Amelina i dr., “O nelineinom deformirovanii ugleplastikov: eksperiment, model, raschet”, IVT SO RAN: Vychislitelnye tekhnologii, 20:5 (2015), 27–52 | Zbl

[9] R.A. Kayumov, S.A. Lukankin, V.N. Paimushin, S.A. Kholmogorov, “Identifikatsiya mekhanicheskikh kharakteristik armirovannykh voloknami kompozitov”, Uchenye zapiski Kazanskogo universiteta. Fiziko-matematicheskie nauki, 157:4 (2015), 112–132 | MR

[10] L.N. Shafigullin, A.A. Bo-brishev, V.T. Erofeev, A.A. Treshchev, A.N. Shafigullina, “Development of the recommendations on selection of glass-fiber reiforced polyurethanes for vehicle parts”, International Journal of Applied Engineering Research, 10:23 (2015), 43758–43762

[11] A. Grin, Dzh. Adkins, Bolshie uprugie deformatsii i nelineinaya mekhanika sploshnoi sredy, Mir, M., 1965, 456 pp. | MR

[12] A.A. Treschev, A.A. Bobrishev, L.N. Shafigullin, “Constitutive relations for isotropic materials allowing quasilin-earapproximation of the deformation law”, IOP Conference Series: Materials Science and Engineering, 481 (2019), UNSP012014, 7 pp. | DOI

[13] A.A. Treschev, D.A. Romashin, “Opredelyayuschie sootnosheniya dlya nelineinykh anizotropnykh materialov, chuvstvitelnykh k vidu napryazhennogo sostoyaniya”, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2011, no. 4-4, 1740–1742

[14] A.A. Treschev, “Potentsialnaya zavisimost mezhdu deformatsiyami i napryazheniyami dlya ortotropnykh fizicheski nelineinykh materialov”, Fundamentalnye i prikladnye problemy tekhniki i tekhnologii, 2017, no. 4-1 (324), 71–74

[15] G. Kauderer, Nelineinaya mekhanika, Izd-vo inostr. lit., M., 1961, 779 pp. | MR

[16] B.S. Tursunov, “O svoistvakh potentsiala napryazhenii uprugikh tel”, PMM, 34:1 (1970), 15–22

[17] A.V. Roze, I.G. Zhigun, M.N. Dushin, “Trekharmirovannye tkanye materialy”, Mekhanika polimerov, 1970, no. 3, 471–476

[18] R.M. Jones, D.A.R. Nelson, “Theoretical-experimental correlation of material models for non-linear deformation of graphite”, AIAA Journal, 14:10 (1976), 1427–1435 | DOI

[19] R.M. Jones, “Stress-Strain Relations for Materials with Different Moduli in Tension and Compression”, AIAA Journal, 15:1 (1977), 16–25 | DOI

[20] A.A. Zolochevskii, V.N. Kuznetsov, “Raschet anizotropnykh obolochek iz raznomodulnykh materialov pri neosesimmetrichnom nagruzhenii”, Dinamika i prochnost tyazhelykh mashin, DGU, Dnepropetrovsk, 1989, 84–92