On the problem of conjugacy of words in a certain class of subgroups of Artin groups
Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 88-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the main problems in combinatorial group theory is the problem of equality and conjugacy of words. It is known that this problem is algorithmically unsolvable in the class of finitely defined groups. The problem arises of studying these problems in certain classes of groups, as well as whether subgroups of this class of groups inherit the algorithmic solvability of the word conjugacy problem. D. Collins and K. Miller defined a group with a solvable word conjugacy problem containing a subgroup of finite index in which the word conjugacy problem is not solvable. We also construct a group with an unsolvable word conjugacy problem containing a subgroup of finite index with a solvable word conjugacy problem. E. Artin defined braid groups and proved that the problem of word equality is algorithmically solvable in braid groups. A. A. Markov constructed an algebraic theory of braid groups and re-proved, using the constructed theory, the problem of word equality. F. Garside proved that the conjugacy problem of words in braid groups ${\mathfrak{B}}_{n+1}$ is solvable. Saito, using the ideas Of F. Garside, proved the solvability of the problem of equality and conjugacy of words in Artin groups of finite type. It is known that this class of groups belongs to braid groups. The interest is to study the solvability of this problem in subgroups of the class groups, in particular, in the normal divisor generated by the squares forming a group called painted subgroup of this group. In [1] it is proved that in a colored subgroup of Artin groups of finite type, the word conjugacy problem is solvable. It is known that in Artin groups with a tree structure, the word conjugacy problem is also solvable. [2]. In this paper, we prove that colored subgroups of Artin groups with a tree structure inherit the property of positive solvability of the word conjugacy problem.
Keywords: Artin groups, colored subgroup, word conjugation problem.
@article{CHEB_2021_22_4_a2,
     author = {V. N. Bezverkhnii and N. B. Bezverkhnyaya},
     title = {On the problem of conjugacy of words in a certain class of subgroups of {Artin} groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {88--99},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a2/}
}
TY  - JOUR
AU  - V. N. Bezverkhnii
AU  - N. B. Bezverkhnyaya
TI  - On the problem of conjugacy of words in a certain class of subgroups of Artin groups
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 88
EP  - 99
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a2/
LA  - ru
ID  - CHEB_2021_22_4_a2
ER  - 
%0 Journal Article
%A V. N. Bezverkhnii
%A N. B. Bezverkhnyaya
%T On the problem of conjugacy of words in a certain class of subgroups of Artin groups
%J Čebyševskij sbornik
%D 2021
%P 88-99
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a2/
%G ru
%F CHEB_2021_22_4_a2
V. N. Bezverkhnii; N. B. Bezverkhnyaya. On the problem of conjugacy of words in a certain class of subgroups of Artin groups. Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 88-99. http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a2/

[1] Bezverkhnii V. N., Grinblat V. A., “Reshenie obobschennoi problemy sopryazhennosti slov v krashennykh podgruppakh grupp Artina konechnogo tipa”, Mat. zametki, 79:5 (2006) | DOI | Zbl

[2] Bezverkhnii V. N., Karpova O. Yu., “Problema ravenstva i sopryazhennosti v gruppakh Artina s drevesnoi strukturoi”, Izv. Tulskogo gos. un-ta. Ser. «Matematika. Mekhanika. Informatika», 11:1, Matematika (2006), 67–82

[3] Garsid F. A., “The braid groups and other groups”, Quart. Math. Oxford. ser. (2), 20 (1969), 235–254 | DOI | MR | Zbl

[4] Briskorn E., Saito K., “Gruppy Artina i gruppy Kokstera”, Matematika, 18:6 (1974), 56–79

[5] Appel K. J., Schupp E., “Artin group and infinite Coxeter groups”, Invent math., 1984, 50–78 | MR | Zbl

[6] Appel K. J., “On Artin groups and Coxeter groups of large type”, Contempor. Math., 1984, 50–78 | DOI | MR | Zbl

[7] Bezverkhnii V. N., “Reshenie problemy sopryazhennosti slov v gruppakh Artina i Kokstera bolshogo tipa”, Algoritmicheskie problemy teorii grupp i polugrupp, Mezh. vuz. sbornik nauch. trudov, Tula, 1986, 26–61 | MR

[8] Bezverkhnii V. N., “O gruppakh Artina, Kokstera s drevesnoi strukturoi”, Algebra i teoriya chisel. Sovremennye problemy i ikh prilozheniya, V Mezhdunarodnaya konferentsiya, Tezisy dokladov (Tula, 2003), 33–34

[9] Bezverkhnii V. N., “Reshenie problemy obobschennoi sopryazhennosti slov v gruppakh Artina bolshogo tipa”, Fundamentalnaya i prikladnaya matematika, 1999, 1–38 | Zbl

[10] Bezverkhnii V. N., Bezverkhnyaya N. B., “Reshenie problemy ravenstva i sopryazhennosti slov v nekotorom klasse grupp Artina”, Fundamentalnaya i prikladnaya matematika, 22:4 (2019), 9–27

[11] Bezverkhnii V. N., Inchenko O. V., “Problema sopryazhennosti podgrupp v konechnoporozhdennykh gruppakh Kokstera s drevesnoi strukturoi”, Chebyshevskii sbornik, 11:3 (2010), 32–56 | Zbl

[12] Bezverkhnii V. N., Bezverkhnyaya N. B., “Reshenie problemy sopryazhennosti slov v nekotorom klasse podgrupp Artina s drevesnoi strukturoi”, Algebra i teoriya chisel, i diskretnaya geometriya: sovremennye problemy i prilozheniya, Materialy XV mezhd. konf. Posvyaschennoi 100-letiyu so dnya rozhdeniya N.M. Korobova (Tula, 2018), 67–69

[13] Collins D., Miller C., “The conjugacy problem and subgroups of finite index”, Proc. London Math. Soc. (3), 34:3 (1977), 535–556 | DOI | MR | Zbl