On diameter bounds for planar integral point sets in semi-general position
Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 344-351

Voir la notice de l'article provenant de la source Math-Net.Ru

A point set $M$ in the Euclidean plane is said to be a planar integral point set if all the distances between the elements of $M$ are integers, and $M$ is not situated on a straight line. A planar integral point set is said to be a set in semi-general position, if it does not contain collinear triples. The existing lower bound for mininal diameter of a planar integral point set is linear with respect to its cardinality. There were no known special diameter bounds for planar integral point sets in semi-general position of given cardinality (the known upper bound for planar integral point sets is constructive and employs planar integral point sets in semi-general position). We prove a new lower bound for minimal diameter of planar integral point sets in semi-general position that is better than linear (polynomial of power $5/4$). The proof is based on several lemmas and observations, including the ones established by Solymosi to prove the first linear lower bound for diameter of a planar integral point set.
Keywords: combinatorial geometry, diameter of a set, integral point set.
@article{CHEB_2021_22_4_a18,
     author = {N. N. Avdeev},
     title = {On diameter bounds for planar integral point sets in semi-general position},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {344--351},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a18/}
}
TY  - JOUR
AU  - N. N. Avdeev
TI  - On diameter bounds for planar integral point sets in semi-general position
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 344
EP  - 351
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a18/
LA  - ru
ID  - CHEB_2021_22_4_a18
ER  - 
%0 Journal Article
%A N. N. Avdeev
%T On diameter bounds for planar integral point sets in semi-general position
%J Čebyševskij sbornik
%D 2021
%P 344-351
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a18/
%G ru
%F CHEB_2021_22_4_a18
N. N. Avdeev. On diameter bounds for planar integral point sets in semi-general position. Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 344-351. http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a18/