Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_4_a18, author = {N. N. Avdeev}, title = {On diameter bounds for planar integral point sets in semi-general position}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {344--351}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a18/} }
N. N. Avdeev. On diameter bounds for planar integral point sets in semi-general position. Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 344-351. http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a18/
[1] Anning N. H., Erdos P., “Integral distances”, Bulletin of the American Mathematical Society, 51:8 (1945), 598-600 | DOI | MR | Zbl
[2] Erdos P., “Integral distances”, Bulletin of the American Mathematical Society, 51:12 (1945), 996 | DOI | MR
[3] Avdeev N. N., Semenov E. M., “Mnozhestva tochek s tselochislennymi rasstoyaniyami na ploskosti i v evklidovom prostranstve”, Matematicheskii forum (Itogi nauki. Yug Rossii), 2018, 217-236
[4] Kurz S., Laue R., “Bounds for the minimum diameter of integral point sets”, Australasian Journal of Combinatorics, 39 (2007), 233-240, arXiv: 0804.1296 | MR | Zbl
[5] Kurz S., Wassermann A., “On the minimum diameter of plane integral point sets”, Ars Combinatoria, 101 (2011), 265-287, arXiv: 0804.1307 | MR | Zbl
[6] Antonov A. R., Kurz S., “Maximal integral point sets over $\mathbb{Z}^2$”, International Journal of Computer Mathematics, 87:12 (2008), 2653-2676, arXiv: 0804.1280 | DOI | MR
[7] Huff G. B., “Diophantine problems in geometry and elliptic ternary forms”, Duke Mathematical Journal, 15:2 (1948), 443-453 | DOI | MR | Zbl
[8] Harborth H., Kemnitz A., Moller M., “An upper bound for the minimum diameter of integral point sets”, Discrete Computational Geometry, 9:4 (1993), 427-432 | DOI | MR | Zbl
[9] Piepmeyer L., “The maximum number of odd integral distances between points in the plane”, Discrete Computational Geometry, 16:1 (1996), 113-115 | DOI | MR | Zbl
[10] Kreisel T., Kurz S., “There are integral heptagons, no three points on a line, no four on a circle”, Discrete Computational Geometry, 39:4 (2008), 786-790 | DOI | MR | Zbl
[11] S. Kurz i dr., “Constructing 7-clusters”, Serdica Journal of Computing, 8:1 (2014), 47-70, arXiv: 1312.2318 | DOI | MR | Zbl
[12] Solymosi J., “Note on integral distances”, Discrete Computational Geometry, 30:2 (2003), 337-342 | DOI | MR | Zbl
[13] Avdeev N., “On existence of integral point sets and their diameter bounds”, Australasian Journal of Combinatorics, 77:1 (2020), 100-116, arXiv: 1906.11926 | MR | Zbl
[14] Bat-Ochir G., “On the number of points with pairwise integral distances on a circle”, Discrete Applied Mathematics, 254 (2018), 17-32 | DOI | MR
[15] Brass P., Moser W. O., Pach J., Research problems in discrete geometry, Springer Science Business Media, 2006 | MR
[16] Guy R., Unsolved problems in number theory, v. 1, Springer Science Business Media, 2013 | MR
[17] Avdeev N. N., “Ob otyskanii tseloudalennykh mnozhestv spetsialnogo vida”, Aktualnye problemy prikladnoi matematiki, informatiki i mekhaniki, sbornik trudov Mezhdunarodnoi nauchnoi konferentsii, Nauchno-issledovatelskie publikatsii, 2018, 492-498
[18] Avdeev N. N., “On integral point sets in special position”, materialy mezhdunarodnoi molodezhnoi nauchnoi shkoly «Aktualnye napravleniya matematicheskogo analiza i smezhnye voprosy», Nekotorye voprosy analiza, algebry, geometrii i matematicheskogo obrazovaniya, 8, 2018, 5–6
[19] Kurz S., “On the characteristic of integral point sets in $E^m$”, Australasian Journal of Combinatorics, 36 (2006), 241, arXiv: math/0511704 | MR | Zbl
[20] Nozaki H., “Lower bounds for the minimum diameter of integral point sets”, Australasian Journal of Combinatorics, 56 (2013), 139-143 | MR | Zbl
[21] Smurov M., Spivak A., “Pokrytiya poloskami”, Kvant, 1998, no. 5, 6