Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_4_a14, author = {V. M. Chikin}, title = {The relation between the continuity of the lengths of curves and the continuity of distances in the case of boundedly compact metric spaces}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {289--305}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a14/} }
TY - JOUR AU - V. M. Chikin TI - The relation between the continuity of the lengths of curves and the continuity of distances in the case of boundedly compact metric spaces JO - Čebyševskij sbornik PY - 2021 SP - 289 EP - 305 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a14/ LA - ru ID - CHEB_2021_22_4_a14 ER -
%0 Journal Article %A V. M. Chikin %T The relation between the continuity of the lengths of curves and the continuity of distances in the case of boundedly compact metric spaces %J Čebyševskij sbornik %D 2021 %P 289-305 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a14/ %G ru %F CHEB_2021_22_4_a14
V. M. Chikin. The relation between the continuity of the lengths of curves and the continuity of distances in the case of boundedly compact metric spaces. Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 289-305. http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a14/
[1] Chikin V.M., “Minimalnye derevya Shteinera v malykh okrestnostyakh tochek rimanovykh mnogoobrazii”, Matem. sb., 208:7 (2017), 145–171 | DOI | MR | Zbl
[2] Burago D.Yu., Burago Yu.D., Ivanov S.V., Kurs metricheskoi geometrii, Institut kompyuternykh issledovanii, M.-Izhevsk, 2004 | MR
[3] Gromov M., Metric Structures for Riemannian and Non-Riemannian Spaces, Progress in Math., 152, Birkhäuser, 1999 | MR | Zbl
[4] Khamsi M. A., Kirk W. A., An Introduction to Metric Spaces and Fixed Point Theory, Wiley-IEEE, 2001 | MR | Zbl
[5] Busemann H., The Geometry of Geodesics, Academic Press, New York, 1955 | MR | Zbl
[6] Papadopoulos A., Metric Spaces, Convexity and Nonpositive Curvature, IRMA Lectures in Mathematics and Theoretical Physics, 6, European Mathematical Society, 2005 | MR | Zbl
[7] Finsler P., Uber Kerven und Flachen in allgemeinen Raumen, Verlag Birkhauser AG, Basel, 1951 | MR
[8] Noether E., “Invarianten beliebiger Differentialausdrücke”, Nachr. Ges. Wiss. Gott., Math.-Phys. Kl., 1918 (1918), 37–44
[9] Rund Kh., Differentsialnaya geometriya finslerovykh prostranstv, Nauka, M., 1981
[10] Antonelli P.L., Handbook of Finsler geometry, Kluwer Academic Publishers, Dordrecht, 2003 | MR | Zbl
[11] Bao D., Chern S. S., Shen Z., An Introduction to Riemann-Finsler Geometry, Springer-Verlag, 2000 | MR | Zbl
[12] Shen Z., Lectures on Finsler Geometry, World Scientific Publishers, 2001 | MR | Zbl
[13] Shen Z., Differential geometry of spray and Finsler spaces, Kluwer Academic Publishers, Dordrecht, 2001 | MR | Zbl
[14] De Giorgi E., “Sulla convergenza di alcune successioni di integrali del tipo dell'area”, Rend. Mat., Ser. 8, 1975, 277–294 | MR | Zbl
[15] De Giorgi E., Franzoni T., “Su un tipo di convergenza variazionale”, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 58:6 (1975), 842–850 | MR | Zbl
[16] De Giorgi E., Spagnolo S., “Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine”, Boll. Un. Mat. It., Ser. 8, 1973, 391–411 | MR | Zbl
[17] Dal Maso G., An Introduction to Gamma-Convergence, Birkhäuser, Boston, 1993 | MR | Zbl
[18] Braides A., Gamma-convergence for beginners, Oxford University Press, 2002 | MR | Zbl