On the bifurcation of the solution of the Fermat--Steiner problem under $1$-parameter variation of the boundary in $H(\mathbb{R}^2)$
Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 265-288
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider the Fermat–Steiner problem in hyperspaces with the Hausdorff metric. If $X$ is a metric space, and a non-empty finite subset $\mathcal{A}$ is fixed in the space of non-empty closed and bounded subsets $H(X)$, then we will call the element $K \in H(X)$, at which the minimum of the sum of the distances to the elements of $\mathcal{A}$ is achieved, the Steiner astrovertex, the network connecting $\mathcal{A}$ with $K$ — the minimal astronet, and $\mathcal{A}$ itself — the border. In the case of proper $X$, all its elements are compact, and the set of Steiner astrovertices is nonempty. In this article, we prove a criterion for when the Steiner astrovertex for one-point boundary compact sets in $H(X)$ is one-point. In addition, a lower estimate for the length of the minimal parametric network is obtained in terms of the length of an astronet with one-point vertices contained in the boundary compact sets, and the properties of the boundaries for which an exact estimate is achieved are studied. Also bifurcations of Steiner astrovertices under $1$-parameter deformation of three-element boundaries in $H(\mathbb{R}^2)$, which illustrate geometric phenomena that are absent in the classical Steiner problem for points in $\mathbb{R}^2$, are studied.
Keywords:
Fermat–Steiner problem, Steiner minimal tree, minimal parametric network, minimal astronet, Steiner astrovertex, Steiner astrocompact, hyperspace, proper space, Hausdorff distance.
@article{CHEB_2021_22_4_a13,
author = {A. M. Tropin},
title = {On the bifurcation of the solution of the {Fermat--Steiner} problem under $1$-parameter variation of the boundary in $H(\mathbb{R}^2)$},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {265--288},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a13/}
}
TY - JOUR
AU - A. M. Tropin
TI - On the bifurcation of the solution of the Fermat--Steiner problem under $1$-parameter variation of the boundary in $H(\mathbb{R}^2)$
JO - Čebyševskij sbornik
PY - 2021
SP - 265
EP - 288
VL - 22
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a13/
LA - ru
ID - CHEB_2021_22_4_a13
ER -
%0 Journal Article
%A A. M. Tropin
%T On the bifurcation of the solution of the Fermat--Steiner problem under $1$-parameter variation of the boundary in $H(\mathbb{R}^2)$
%J Čebyševskij sbornik
%D 2021
%P 265-288
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a13/
%G ru
%F CHEB_2021_22_4_a13
A. M. Tropin. On the bifurcation of the solution of the Fermat--Steiner problem under $1$-parameter variation of the boundary in $H(\mathbb{R}^2)$. Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 265-288. http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a13/