Mots-clés : Steiner astrocompact, Hausdorff distance.
@article{CHEB_2021_22_4_a13,
author = {A. M. Tropin},
title = {On the bifurcation of the solution of the {Fermat{\textendash}Steiner} problem under $1$-parameter variation of the boundary in $H(\mathbb{R}^2)$},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {265--288},
year = {2021},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a13/}
}
TY - JOUR
AU - A. M. Tropin
TI - On the bifurcation of the solution of the Fermat–Steiner problem under $1$-parameter variation of the boundary in $H(\mathbb{R}^2)$
JO - Čebyševskij sbornik
PY - 2021
SP - 265
EP - 288
VL - 22
IS - 4
UR - http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a13/
LA - ru
ID - CHEB_2021_22_4_a13
ER -
%0 Journal Article
%A A. M. Tropin
%T On the bifurcation of the solution of the Fermat–Steiner problem under $1$-parameter variation of the boundary in $H(\mathbb{R}^2)$
%J Čebyševskij sbornik
%D 2021
%P 265-288
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a13/
%G ru
%F CHEB_2021_22_4_a13
A. M. Tropin. On the bifurcation of the solution of the Fermat–Steiner problem under $1$-parameter variation of the boundary in $H(\mathbb{R}^2)$. Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 265-288. http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a13/
[1] Jarnik V., Kössler M., “O minimalnich grafech, obsahujicich n danych bodu”, Casopis pro pestovani matematiky a fysiky, 63:8 (1934), 223–235 | DOI | Zbl
[2] Cieslik D., $k$-Steiner minimal trees in metric spaces, Ernst–Moritz–Arndt–Univ. Greifswald, Inst. fur Mathematik und Informatik, 1999 | MR
[3] Ivanov A. O., Tuzhilin A. A., Minimal Networks. The Steiner Problems and Its Generalizations, CRC Press, Boca Raton, Fl, 1994 | MR
[4] Tuzhilin A. A., Fomenko A. T., “Mnogoznachnye otobrazheniya, minimalnye poverkhnosti i mylnye plenki”, Vestnik MGU, ser. matem., 1986, no. 3, 3–12 | MR
[5] Stepanova E. I., “Bifurkatsii minimalnykh derevev Shteinera i minimalnykh zapolnenii dlya nevypuklykh chetyrekhtochechnykh granits i subotnoshenie Shteinera evklidovoi ploskosti”, Vestn. Mosk. Un-ta., Ser. 1, Matematika. Mekhanika, 71:2 (2016), 48–51 | Zbl
[6] Stepanova E. I., “Bifurkatsii topologii derevev Shteinera na ploskosti”, Fund. i prikl. matem., 21:6 (2016), 183–204
[7] Arnold V. I., “Teoriya katastrof”, Dinamicheskie sistemy — 5, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 5, VINITI, M., 1986, 219–277
[8] Hausdorff F., Grundzüge der Mengenlehre, Veit, Leipzig, 1914 | MR
[9] Schlicker S., The geometry of the Hausdorff metric, GVSU REU, Grand Valley State Univ., Allendale, MI, 2008
[10] Ivanov A. O., Tuzhilin A. A., Geometriya rasstoyanii Khausdorfa i Gromova—Khausdorfa: sluchai kompaktov, Izd-vo Popechitelskogo soveta mekh-mat f-ta MGU, M., 2017
[11] Blackburn C. C., Lund K., Schlicker S., Sigmon P., Zupan A., An introduction to the geometry of $H(\mathbb{R}^n)$, GVSU REU, Grand Valley State Univ., Allendale, MI, 2007
[12] Emelichev V. A., Melnikov O. I., Sarvanov V. I., Tyshkevich R. I., Lektsii po teorii grafov, Nauka, M., 1990 | MR
[13] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, Izd-vo Instituta kompyuternykh issledovanii, M.—Izhevsk, 2004 | MR
[14] Ivanov A., Tropin A., Tuzhilin A., “Fermat—Steiner problem in the metric space of compact sets endowed with Hausdorff distance”, J. Geom., 108 (2017), 575–590 | DOI | MR | Zbl
[15] Galstyan A. Kh., Ivanov A. O., Tuzhilin A. A., “Problema Ferma — Shteinera v prostranstve kompaktnykh podmnozhestv $\mathbb{R}^m$ s metrikoi Khausdorfa”, Matem. sb., 212:1 (2021), 28–62 | DOI | MR | Zbl
[16] Gilbert E. N. and Pollak H. O., “Steiner minimal trees”, SIAM J. Appl. Math., 16:1 (1968), 1–29 | DOI | MR | Zbl