Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_4_a12, author = {V. I. Subbotin}, title = {On the existence of $RR$-polyhedra associated with the icosahedron}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {253--264}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a12/} }
V. I. Subbotin. On the existence of $RR$-polyhedra associated with the icosahedron. Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 253-264. http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a12/
[1] Grunbaum B., “Regular polyhedra - old and new”, Aequationes mathematicae, 16:1-2 (1977), 1–20 | DOI | MR | Zbl
[2] Coxeter H. S., “Regular and semi-regular polytopes. II”, Mathematische Zeitschrift, 188:4 (1985), 559–591 | DOI | MR | Zbl
[3] Coxeter H. S., “Regular and Semi-Regular Polytopes. III.”, Mathematische Zeitschrift, 200 (1988/89), 3–46 | DOI | MR
[4] Coxeter H. S., Regular polytopes, London-NY, 1963 | MR | Zbl
[5] Deza M., Grishukhin V. P., Shtogrin M. I., Izometricheskie poliedralnye podgrafy v giperkubakh i kubicheskikh reshetkakh, MTsNMO, M., 2007
[6] Emelichev V. A., Kovalev M. M., Kravtsov M. K., Mnogogranniki. Grafy. Optimizatsiya, Nauka, M., 1981 | MR
[7] Cromwell P. R., Polyhedra, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[8] Makarov P. V., “On the derivation of four-dimensional semi-regular polytopes”, Voprosy Diskret. Geom. Mat. Issled. Akad. Nauk. Mold., 103 (1988), 139–150 | MR | Zbl
[9] Makarov V. S., “Pravilnye mnogogranniki i mnogogranniki s pravilnymi granyami trekhmernogo prostranstva Lobachevskogo”, Materialy X Mezhdunarodnogo seminara “Diskretnaya matematika i ee prilozheniya”, MGU, M., 2010, 58–66
[10] Smirnov E. Yu., Gruppy otrazhenii i pravilnye mnogogranniki, MTsNMO, M., 2009
[11] Farris S. L., “Completely classifying all vertex-transitive and edge-transitive polyhedra”, Geometriae Dedicata, 26:1 (1988), 111–124 | DOI | MR | Zbl
[12] Wills J. M., “On polyhedra with transitivity properties”, Discrete and Computational Geometry, 1:3 (1986), 195–199 | DOI | MR | Zbl
[13] Berman M., “Regular-faced Convex Polyhedra”, Journal of The Franklin Institute, 291:5 (1971), 329–352 | DOI | MR | Zbl
[14] McMullen P., Geometric Regular Polytopes, Cambridge University Press, 2020 | MR | Zbl
[15] Schulte E., Wills J. M., “On Coxeter's regular skew polyhedra”, Discrete Mathematics, 60 (1986), 253–262 | DOI | MR | Zbl
[16] McMullen P., Schulte E., “Higher Toroidal Regular Polytopes”, Advances in Mathematics, 117:1 (1996), 17–51 | DOI | MR | Zbl
[17] Cunningham E., Pellicer D., “Classification of tight regular polyhedra”, Journal of Algebraic Combinatorics, 43 (2016), 665–691 | DOI | MR | Zbl
[18] Johnson N. W., “Convex polyhedra with regular faces”, Can. J. Math., 18:1 (1966), 169–200 | DOI | MR | Zbl
[19] Zalgaller V. A., “Vypuklye mnogogranniki s pravilnymi granyami”, Zap. nauchn. sem. LOMI, 2, 1967, 1–220
[20] Milka A. D., “Pochti pravilnye mnogogranniki”, Trudy In-ta mat. SO AN SSSR, 9, 1987, 136–141 | MR | Zbl
[21] Blind G., Blind R., “The semiregular polytopes”, Commentarii Mathematici Helvetici, 66:1 (1991), 150–154 | DOI | MR | Zbl
[22] Subbotin V. I., “Ob odnom klasse silno simmetrichnykh mnogogrannikov”, Chebyshevskii sbornik, 17:4 (2016), 132–140 | DOI | MR | Zbl
[23] Subbotin V. I., “Some classes of polyhedra with rhombic and deltoidal vertices”, Trudy Mezhdunarodnoi konferentsii «Topology, Geometry, and Dynamics: Rokhlin-100» (Sankt-Peterburg, 2019), 86
[24] Subbotin V. I., “O dvukh klassakh mnogogrannikov s rombicheskimi vershinami”, Zap. nauchn. semin. POMI, 476, 2018, 153–164
[25] Subbotin V. I., “Ob odnom klasse mnogogrannikov s simmetrichnymi zvezdami vershin”, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 169, 2019, 86–95
[26] Subbotin V. I., “O polnote spiska vypuklykh $RR$-mnogogrannikov”, Chebyshevskii sbornik, 21:1 (2020), 297–309 | DOI | MR
[27] Subbotin V. I., “$RR$-mnogogranniki: suschestvovanie, polnota spiska”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii, Materialy XVIII Mezhdunarodnoi konferentsii, posvyaschennoi stoletiyu so dnya rozhdeniya professorov B. M. Bredikhina, V. I. Nechaeva i S. B. Stechkina (Tula, 23-26 sentyabrya 2020 goda), 271–272
[28] Aleksandrov A. D., Vypuklye mnogogranniki, Nauka, Novosibirsk, 2007 | MR