On the existence of $RR$-polyhedra associated with the icosahedron
Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 253-264.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work refers to the direction in the theory of polyhedra in $ E ^ 3 $, in which classes of convex polytopes are studied that extend the class of regular (Platonic) polyhedra: polyhedra of such classes retain only some properties of regular polyhedra. Earlier, the author found new classes of polyhedra united by such symmetry conditions under which the conditions for the regularity of the faces were not assumed in advance. At the same time, the completeness of the lists of the considered classes was proved. Further, the author considered the class of so-called $ RR $ -polyhedra. A $ RR $-polyhedron (from the words rombic and regular) is a convex polyhedron that has symmetric rhombic vertices and there are faces that do not belong to any star of these vertices; moreover, all faces that are not included in the star of the rhombic vertex are regular polygons. If a faceted star $ Star (V) $ of a vertex $ V $ of a polyhedron consists of $ n $ equal and equally spaced rhombuses (not squares) with a common vertex $ V $, then $ V $ is called rhombic. If the vertex $ V $ belongs to the axis of rotation of the order $ n $ of the star $ Star (V) $, then $ V $ is called symmetric. A symmetric rhombic vertex $ V $ is called obtuse if the rhombuses of the star $ Star (V) $ at the vertex $ V $ converge at their obtuse angles. An example of an $RR$-polyhedron is an elongated rhombododecahedron. Previously, the author found all $ RR $-polyhedra with two symmetric rhombic vertices. In this paper, we consider the question of the existence of closed convex $ RR $-polyhedra in $ E ^ 3 $ with one symmetric obtuse rhombic vertex and regular faces of the same type. A theorem is proved that there are only two such polyhedra, a $13$-faced and a $19$-faced. Both of these polyhedra are obtained from the regular — icosahedron. The proof of the existence of a $19$-hedron is based, in particular, on A.D. Aleksandrov's theorem on the existence of a convex polyhedron with a given unfolding.
Keywords: symmetric rhombic vertices, $ RR $-polyhedron, rhombic vertex star, unfolding.
@article{CHEB_2021_22_4_a12,
     author = {V. I. Subbotin},
     title = {On the existence of $RR$-polyhedra associated with the icosahedron},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {253--264},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a12/}
}
TY  - JOUR
AU  - V. I. Subbotin
TI  - On the existence of $RR$-polyhedra associated with the icosahedron
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 253
EP  - 264
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a12/
LA  - ru
ID  - CHEB_2021_22_4_a12
ER  - 
%0 Journal Article
%A V. I. Subbotin
%T On the existence of $RR$-polyhedra associated with the icosahedron
%J Čebyševskij sbornik
%D 2021
%P 253-264
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a12/
%G ru
%F CHEB_2021_22_4_a12
V. I. Subbotin. On the existence of $RR$-polyhedra associated with the icosahedron. Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 253-264. http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a12/

[1] Grunbaum B., “Regular polyhedra - old and new”, Aequationes mathematicae, 16:1-2 (1977), 1–20 | DOI | MR | Zbl

[2] Coxeter H. S., “Regular and semi-regular polytopes. II”, Mathematische Zeitschrift, 188:4 (1985), 559–591 | DOI | MR | Zbl

[3] Coxeter H. S., “Regular and Semi-Regular Polytopes. III.”, Mathematische Zeitschrift, 200 (1988/89), 3–46 | DOI | MR

[4] Coxeter H. S., Regular polytopes, London-NY, 1963 | MR | Zbl

[5] Deza M., Grishukhin V. P., Shtogrin M. I., Izometricheskie poliedralnye podgrafy v giperkubakh i kubicheskikh reshetkakh, MTsNMO, M., 2007

[6] Emelichev V. A., Kovalev M. M., Kravtsov M. K., Mnogogranniki. Grafy. Optimizatsiya, Nauka, M., 1981 | MR

[7] Cromwell P. R., Polyhedra, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[8] Makarov P. V., “On the derivation of four-dimensional semi-regular polytopes”, Voprosy Diskret. Geom. Mat. Issled. Akad. Nauk. Mold., 103 (1988), 139–150 | MR | Zbl

[9] Makarov V. S., “Pravilnye mnogogranniki i mnogogranniki s pravilnymi granyami trekhmernogo prostranstva Lobachevskogo”, Materialy X Mezhdunarodnogo seminara “Diskretnaya matematika i ee prilozheniya”, MGU, M., 2010, 58–66

[10] Smirnov E. Yu., Gruppy otrazhenii i pravilnye mnogogranniki, MTsNMO, M., 2009

[11] Farris S. L., “Completely classifying all vertex-transitive and edge-transitive polyhedra”, Geometriae Dedicata, 26:1 (1988), 111–124 | DOI | MR | Zbl

[12] Wills J. M., “On polyhedra with transitivity properties”, Discrete and Computational Geometry, 1:3 (1986), 195–199 | DOI | MR | Zbl

[13] Berman M., “Regular-faced Convex Polyhedra”, Journal of The Franklin Institute, 291:5 (1971), 329–352 | DOI | MR | Zbl

[14] McMullen P., Geometric Regular Polytopes, Cambridge University Press, 2020 | MR | Zbl

[15] Schulte E., Wills J. M., “On Coxeter's regular skew polyhedra”, Discrete Mathematics, 60 (1986), 253–262 | DOI | MR | Zbl

[16] McMullen P., Schulte E., “Higher Toroidal Regular Polytopes”, Advances in Mathematics, 117:1 (1996), 17–51 | DOI | MR | Zbl

[17] Cunningham E., Pellicer D., “Classification of tight regular polyhedra”, Journal of Algebraic Combinatorics, 43 (2016), 665–691 | DOI | MR | Zbl

[18] Johnson N. W., “Convex polyhedra with regular faces”, Can. J. Math., 18:1 (1966), 169–200 | DOI | MR | Zbl

[19] Zalgaller V. A., “Vypuklye mnogogranniki s pravilnymi granyami”, Zap. nauchn. sem. LOMI, 2, 1967, 1–220

[20] Milka A. D., “Pochti pravilnye mnogogranniki”, Trudy In-ta mat. SO AN SSSR, 9, 1987, 136–141 | MR | Zbl

[21] Blind G., Blind R., “The semiregular polytopes”, Commentarii Mathematici Helvetici, 66:1 (1991), 150–154 | DOI | MR | Zbl

[22] Subbotin V. I., “Ob odnom klasse silno simmetrichnykh mnogogrannikov”, Chebyshevskii sbornik, 17:4 (2016), 132–140 | DOI | MR | Zbl

[23] Subbotin V. I., “Some classes of polyhedra with rhombic and deltoidal vertices”, Trudy Mezhdunarodnoi konferentsii «Topology, Geometry, and Dynamics: Rokhlin-100» (Sankt-Peterburg, 2019), 86

[24] Subbotin V. I., “O dvukh klassakh mnogogrannikov s rombicheskimi vershinami”, Zap. nauchn. semin. POMI, 476, 2018, 153–164

[25] Subbotin V. I., “Ob odnom klasse mnogogrannikov s simmetrichnymi zvezdami vershin”, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 169, 2019, 86–95

[26] Subbotin V. I., “O polnote spiska vypuklykh $RR$-mnogogrannikov”, Chebyshevskii sbornik, 21:1 (2020), 297–309 | DOI | MR

[27] Subbotin V. I., “$RR$-mnogogranniki: suschestvovanie, polnota spiska”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii, Materialy XVIII Mezhdunarodnoi konferentsii, posvyaschennoi stoletiyu so dnya rozhdeniya professorov B. M. Bredikhina, V. I. Nechaeva i S. B. Stechkina (Tula, 23-26 sentyabrya 2020 goda), 271–272

[28] Aleksandrov A. D., Vypuklye mnogogranniki, Nauka, Novosibirsk, 2007 | MR