On a class of factors of the Chebyshev polynomials
Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 241-252

Voir la notice de l'article provenant de la source Math-Net.Ru

The article defines a class of $D_n(x)$ polynomials by specially designed nodes. Each of $D_n(x)$ is the factor of the Chebyshev polynomial of the first kind $T_{2n}(x)$. The research task for polynomials $D_n(x)$ on the interval $[0,1]$ is reduced to find values $D_n(x)$. The article contains exact expressions and estimates of values $D_n(x)$ in special nodes.
Keywords: Chebyshev polynomials, Lobachevsky function, estimations.
@article{CHEB_2021_22_4_a11,
     author = {S. Y. Soloviev},
     title = {On a class of factors of the {Chebyshev} polynomials},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {241--252},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a11/}
}
TY  - JOUR
AU  - S. Y. Soloviev
TI  - On a class of factors of the Chebyshev polynomials
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 241
EP  - 252
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a11/
LA  - ru
ID  - CHEB_2021_22_4_a11
ER  - 
%0 Journal Article
%A S. Y. Soloviev
%T On a class of factors of the Chebyshev polynomials
%J Čebyševskij sbornik
%D 2021
%P 241-252
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a11/
%G ru
%F CHEB_2021_22_4_a11
S. Y. Soloviev. On a class of factors of the Chebyshev polynomials. Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 241-252. http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a11/