On a class of factors of the Chebyshev polynomials
Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 241-252.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article defines a class of $D_n(x)$ polynomials by specially designed nodes. Each of $D_n(x)$ is the factor of the Chebyshev polynomial of the first kind $T_{2n}(x)$. The research task for polynomials $D_n(x)$ on the interval $[0,1]$ is reduced to find values $D_n(x)$. The article contains exact expressions and estimates of values $D_n(x)$ in special nodes.
Keywords: Chebyshev polynomials, Lobachevsky function, estimations.
@article{CHEB_2021_22_4_a11,
     author = {S. Y. Soloviev},
     title = {On a class of factors of the {Chebyshev} polynomials},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {241--252},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a11/}
}
TY  - JOUR
AU  - S. Y. Soloviev
TI  - On a class of factors of the Chebyshev polynomials
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 241
EP  - 252
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a11/
LA  - ru
ID  - CHEB_2021_22_4_a11
ER  - 
%0 Journal Article
%A S. Y. Soloviev
%T On a class of factors of the Chebyshev polynomials
%J Čebyševskij sbornik
%D 2021
%P 241-252
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a11/
%G ru
%F CHEB_2021_22_4_a11
S. Y. Soloviev. On a class of factors of the Chebyshev polynomials. Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 241-252. http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a11/

[1] Prasolov V. V., Mnogochleny, MTsNMO, M., 2003, 336 pp.

[2] Pashkovskii S., Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva, Nauka, M., 1983, 384 pp. | MR

[3] Chubarikov V. N., “Arifmeticheskie summy i gaussova teorema umnozheniya”, Chebyshevskii sb., 16:2 (2015), 231–253 | MR | Zbl

[4] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963, 1100 pp. | MR

[5] Milnor J., “Hyperbolic geometry: the first 150 years”, Bull. Amer. Math. Soc., 6:1 (1982), 9–24 | DOI | MR | Zbl

[6] Krasnov V. A., “Ob integralnykh formulakh ob'ema giperbolicheskikh tetraedrov”, Sovr. matematika. Fundam. napravleniya, 49, 2013, 89–98

[7] Dunaev A. S., Shlychkov V. I., Spetsialnye funktsii, UrFU, Ekaterinburg, 2015, 1321 pp.

[8] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979, 832 pp.

[9] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, v. 3, Spetsialnye funktsii. Dopolnitelnye glavy, Fizmatlit, M., 2003, 688 pp. | MR

[10] Gordon L., “A stochastic approach to the gamma function”, Amer. Math. Monthly, 101:9 (1994), 858–864 | DOI | MR

[11] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 1, Nauka, M., 1966, 632 pp. | MR

[12] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Binom, Laboratoriya znanii, M., 2021, 636 pp. | MR

[13] Gelfand I. M., Lvovskii S. M., Toom A. L., Trigonometriya, MTsNMO, M., 2008, 199 pp.

[14] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, v. 1, Elementarnye funktsii, Fizmatlit, M., 2002, 632 pp. | MR

[15] Olver F., Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Nauka, M., 1978, 375 pp.