Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_3_a9, author = {A. V. Lunevich and N. V. Shamukova}, title = {Polynomials with small values in the neighborhoods of zeros in {Archimedean} and {non-Archimedean} metrics}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {143--153}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a9/} }
TY - JOUR AU - A. V. Lunevich AU - N. V. Shamukova TI - Polynomials with small values in the neighborhoods of zeros in Archimedean and non-Archimedean metrics JO - Čebyševskij sbornik PY - 2021 SP - 143 EP - 153 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a9/ LA - ru ID - CHEB_2021_22_3_a9 ER -
%0 Journal Article %A A. V. Lunevich %A N. V. Shamukova %T Polynomials with small values in the neighborhoods of zeros in Archimedean and non-Archimedean metrics %J Čebyševskij sbornik %D 2021 %P 143-153 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a9/ %G ru %F CHEB_2021_22_3_a9
A. V. Lunevich; N. V. Shamukova. Polynomials with small values in the neighborhoods of zeros in Archimedean and non-Archimedean metrics. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 143-153. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a9/
[1] V. I. Bernik, “An application of Haudorff dimension in the theory of Diophantine approximation”, Acta. Arith., 42 (1983), 219–253 | DOI | MR | Zbl
[2] V. I. Bernik. N. Kalosha, “Approximation of zero by values ol integral polvnomials in space $\mathbb{R}\times\mathbb{C}\times\mathbb{Q}_p$”, Vesti NAN of Belarus Ser. fiz-mat nauk, 1 (2004), 121–123 | MR
[3] Bernik V. I., Gotze F., “Distribution of real algebraic numbers of arbitrary degree in short intervals”, Izvestiya: Mathematics, 79:1 (2015), 18–39 | DOI | MR | Zbl
[4] V. G. Sprindzhuk, “Dokazatelstvo gipotezy Malera o mere mnozhestva S-chisel”, Izv. AN SSSR, ser. mat., 29:2 (1965), 379–436 | MR | Zbl
[5] V. G. Sprindzhuk, Problema Malera v metricheskoi teorii chisel, Nauka i tekhnika, Minsk, 1967, 181 pp. | MR
[6] Schmidt W. M., Diophantine Approximation, Springer, 1980, 312 pp. | MR | Zbl
[7] Baker A., “Linear Forms in the Logarithms of Algebraic Numbers, I”, Mathematika, 12 (1966), 204–216 | DOI | MR
[8] Beresnevich V. V., “On approximation of real numbers bv real algebraic numbers”, Acta Arith., 90 (1999), 97–112 | DOI | MR | Zbl
[9] Bernik V. I., “The exact order of approximating zero by values of integral polynomials”, Acta Arith., 53:1 (1989), 17–28 | DOI | MR | Zbl
[10] Bernik V. I., Dodson M. M., Metric Diophantine Approximation on Manifolds, Cambridge University Press, 1999 | MR | Zbl
[11] Bernik V., Budarina N., Dickinson H., “A divergent Khintchine theorem in the real, complex and p-adic fields”, Lith. Math. J., 48:2 (2008), 158–173 | DOI | MR | Zbl
[12] Bernik V., Budarina N., Dickinson H., “Simultaneous Diophantine approximation in the real, complex and p-adic fields”, Math. Proc. Cambridge Philos. Soc., 149:2 (2010), 193–216 | DOI | MR | Zbl
[13] Khintchine A. Ya., “Einige Satze uber Kcttenbriiche mit Anwvndungen auf die Theorie dear Diophantischen Approximationeii”, Math. Ann., 92 (1924), 115–125 | DOI | MR | Zbl
[14] Mahler K., “Uber das MaB der Menge aller S-Zahlen”, Math. Ann., 106 (1932), 131–139 | DOI | MR
[15] Volkmann B., “Zur metrischen Theorie der S-Zahlen”, J. reine und angew. Math., 213:1-2 (1963), 58–65 | MR | Zbl