Polynomials with small values in the neighborhoods of zeros in Archimedean and non-Archimedean metrics
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 143-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a positive integer $Q>0$, let $I\subset \mathbb{R}$ denote an interval of length $\mu_1 I=Q^{-\gamma_1}$ (where $\mu_1$ is the Lebesgue measure) and $\mu_2 K=Q^{-\gamma_2}, \ \gamma_2>0$ (where $\mu_2$ is the Haar measure of a measurable cylinder $K \subset \mathbb{Q}_p$). Let us denote the set of polynomials of degree $\leq n$ and height $H\left(P\right)\leq Q$ as $$ \mathcal{P}_n\left(Q\right)=\left\{P\in \mathbb{Z}[x]\ :\ \deg{P}\geq n,\ H\left(P\right)\leq Q\right\}. $$ Let $\mathcal{A}\left(n,Q\right)$ denote the set of real and $p$-adic roots of such polynomials $P\left(x\right)$ lying in the space $V=I\times K$. In this paper it is proved that the following inequality holds for a suitable constant $c_1=c_1\left(n\right)$ and $0\leq v_1, v_2\le \frac{1}{2}$: $$ \#\mathcal{A}\left(n,Q\right)\ge c_1 Q^{n+1-\gamma_1-\gamma_2}. $$ The proof relies on methods of metric theory of Diophantine approximation developed by V.G. Sprindzuk to prove Mahler's conjecture and by V.I. Bernik to prove A. Baker's conjecture.
Keywords: Lebesgue measure, Haar measure, algebraic numbers, Diophantine approximation, irreducible polynomials.
@article{CHEB_2021_22_3_a9,
     author = {A. V. Lunevich and N. V. Shamukova},
     title = {Polynomials with small values in the neighborhoods of zeros in {Archimedean} and {non-Archimedean} metrics},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {143--153},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a9/}
}
TY  - JOUR
AU  - A. V. Lunevich
AU  - N. V. Shamukova
TI  - Polynomials with small values in the neighborhoods of zeros in Archimedean and non-Archimedean metrics
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 143
EP  - 153
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a9/
LA  - ru
ID  - CHEB_2021_22_3_a9
ER  - 
%0 Journal Article
%A A. V. Lunevich
%A N. V. Shamukova
%T Polynomials with small values in the neighborhoods of zeros in Archimedean and non-Archimedean metrics
%J Čebyševskij sbornik
%D 2021
%P 143-153
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a9/
%G ru
%F CHEB_2021_22_3_a9
A. V. Lunevich; N. V. Shamukova. Polynomials with small values in the neighborhoods of zeros in Archimedean and non-Archimedean metrics. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 143-153. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a9/

[1] V. I. Bernik, “An application of Haudorff dimension in the theory of Diophantine approximation”, Acta. Arith., 42 (1983), 219–253 | DOI | MR | Zbl

[2] V. I. Bernik. N. Kalosha, “Approximation of zero by values ol integral polvnomials in space $\mathbb{R}\times\mathbb{C}\times\mathbb{Q}_p$”, Vesti NAN of Belarus Ser. fiz-mat nauk, 1 (2004), 121–123 | MR

[3] Bernik V. I., Gotze F., “Distribution of real algebraic numbers of arbitrary degree in short intervals”, Izvestiya: Mathematics, 79:1 (2015), 18–39 | DOI | MR | Zbl

[4] V. G. Sprindzhuk, “Dokazatelstvo gipotezy Malera o mere mnozhestva S-chisel”, Izv. AN SSSR, ser. mat., 29:2 (1965), 379–436 | MR | Zbl

[5] V. G. Sprindzhuk, Problema Malera v metricheskoi teorii chisel, Nauka i tekhnika, Minsk, 1967, 181 pp. | MR

[6] Schmidt W. M., Diophantine Approximation, Springer, 1980, 312 pp. | MR | Zbl

[7] Baker A., “Linear Forms in the Logarithms of Algebraic Numbers, I”, Mathematika, 12 (1966), 204–216 | DOI | MR

[8] Beresnevich V. V., “On approximation of real numbers bv real algebraic numbers”, Acta Arith., 90 (1999), 97–112 | DOI | MR | Zbl

[9] Bernik V. I., “The exact order of approximating zero by values of integral polynomials”, Acta Arith., 53:1 (1989), 17–28 | DOI | MR | Zbl

[10] Bernik V. I., Dodson M. M., Metric Diophantine Approximation on Manifolds, Cambridge University Press, 1999 | MR | Zbl

[11] Bernik V., Budarina N., Dickinson H., “A divergent Khintchine theorem in the real, complex and p-adic fields”, Lith. Math. J., 48:2 (2008), 158–173 | DOI | MR | Zbl

[12] Bernik V., Budarina N., Dickinson H., “Simultaneous Diophantine approximation in the real, complex and p-adic fields”, Math. Proc. Cambridge Philos. Soc., 149:2 (2010), 193–216 | DOI | MR | Zbl

[13] Khintchine A. Ya., “Einige Satze uber Kcttenbriiche mit Anwvndungen auf die Theorie dear Diophantischen Approximationeii”, Math. Ann., 92 (1924), 115–125 | DOI | MR | Zbl

[14] Mahler K., “Uber das MaB der Menge aller S-Zahlen”, Math. Ann., 106 (1932), 131–139 | DOI | MR

[15] Volkmann B., “Zur metrischen Theorie der S-Zahlen”, J. reine und angew. Math., 213:1-2 (1963), 58–65 | MR | Zbl