Hausdorff operators on Hardy type spaces
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 133-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

During last 20 years, an essential part of the theory of Hausdorff operators is concentrated on their boundedness on the real Hardy space $H^1({\mathbb R}^d)$. The spaces introduced by Sweezy are, in many respects, natural extensions of this space. They are nested in full between $H^1({\mathbb R}^d)$ and $L_0^1({\mathbb R}^d)$. Contrary to $H^1({\mathbb R}^d)$, they are subject only to atomic characterization. For the estimates of Hausdorff operators on $H^1({\mathbb R}^d)$, other characterizations have always been applied. Since this option is excluded in the case of Sweezy spaces, in this paper an approach to the estimates of Hausdorff operators is elaborated, where only atomic decompositions are used. While on $H^1({\mathbb R}^d)$ this approach is applicable to the atoms of the same type, on the Sweezy spaces the same approach is not less effective for the sums of atoms of various types. For a single Hausdorff operator, the boundedness condition does not depend on the space but only on the parameters of the operator itself. The space on which this operator acts is characterized by the choice of atoms. An example is given (two-dimensional, for simplicity), where a matrix dilates the argument only in one variable.
Keywords: Hausdorff operator, real Hardy space, atomic decomposition.
@article{CHEB_2021_22_3_a8,
     author = {E. Liflyand and M. Skopina},
     title = {Hausdorff operators on {Hardy} type spaces},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {133--142},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a8/}
}
TY  - JOUR
AU  - E. Liflyand
AU  - M. Skopina
TI  - Hausdorff operators on Hardy type spaces
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 133
EP  - 142
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a8/
LA  - en
ID  - CHEB_2021_22_3_a8
ER  - 
%0 Journal Article
%A E. Liflyand
%A M. Skopina
%T Hausdorff operators on Hardy type spaces
%J Čebyševskij sbornik
%D 2021
%P 133-142
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a8/
%G en
%F CHEB_2021_22_3_a8
E. Liflyand; M. Skopina. Hausdorff operators on Hardy type spaces. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 133-142. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a8/

[1] W. Abu-Shammala, A. Torchinsky, “Spaces between $H^1$ and $L^1$”, Proc. Amer. Math. Soc., 136 (2008), 1743–1748 | DOI | MR | Zbl

[2] K.F. Andersen, “Boundedness of Hausdorff operators on $L^p({\mathbb R}^n), H^1({\mathbb R}^n)$, and $BMO({\mathbb R}^n)$”, Acta Sci. Math. (Szeged), 69 (2003), 409–418 | MR | Zbl

[3] G. Brown, F. Móricz, “Multivariate Hausdorff operators on the spaces $L^p({\mathcal R}^n)$”, J. Math. Anal. Appl., 271 (2002), 443–454 | DOI | MR | Zbl

[4] J. Chen, D. Fan, J. Li, “Hausdorff operators on function spaces”, Chin. Ann. Math. Ser. B, 33 (2012), 537–556 | DOI | MR | Zbl

[5] J. Chen, D. Fan, S. Wang, “Hausdorff Operators on Euclidean Spaces”, Appl. Math. J. Chinese Univ. (Ser. B) (4), 28 (2014), 548–564 | DOI | MR

[6] J. Chen, X. Zhu, “Boundedness of multidimensional Hausdorff operators on $H^1({\mathbb R}^n)$”, J. Math. Anal. Appl., 409 (2014), 428–434 | DOI | MR | Zbl

[7] R.R. Coifman, G. Weiss, “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83 (1977), 569–645 | DOI | MR | Zbl

[8] I. M. Gelfand, S. V. Fomin, Calculus of variations, Prentice-Hall, 1963 | MR

[9] C. Georgakis, “The Hausdorff mean of a Fourier-Stieltjes transform”, Proc. Am. Math. Soc., 116 (1992), 465–471 | DOI | MR | Zbl

[10] G.H. Hardy, Divergent series, Clarendon Press, Oxford, 1949 | MR | Zbl

[11] R. A. Horn, Ch. R. Johnson, Matrix analysis, Cambridge Univ. Press, Cambridge, 1985 | MR | Zbl

[12] A. Lerner, E. Liflyand, “Multidimensional Hausdorff operators on the real Hardy space”, J. Austr. Math. Soc., 83 (2007), 79–86 | DOI | MR | Zbl

[13] E. Liflyand, “Boundedness of multidimensional Hausdorff operators on $H^1(\mathbb R^n)$”, Acta Sci. Math. (Szeged), 74 (2008), 845–851 | MR | Zbl

[14] E. Liflyand, “Hausdorff Operators on Hardy Spaces”, Eurasian Math. J., 4:4 (2013), 101–141 | MR | Zbl

[15] E. Liflyand, F. Móricz, “The Hausdorff operator is bounded on the real Hardy space $H^{1} ({\mathbb{R}})$”, Proc. Am. Math. Soc., 128 (2000), 1391–1396 | DOI | MR | Zbl

[16] E. Liflyand, F. Móricz, “The multi-parameter Hausdorff operator is bounded on the product Hardy space $H^{11}(\mathbb R\times\mathbb R)$”, Analysis, 21 (2001), 107–118 | DOI | MR | Zbl

[17] F. Móricz, “Multivariate Hausdorff operators on the spaces $H^{1}({\mathbb R}^n)$ and $BMO({\mathbb R}^n)$”, Analysis Math., 31 (2005), 31–41 | DOI | MR | Zbl

[18] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N. J., 1970 | MR | Zbl

[19] C. Sweezy, “Subspaces of $L^1(\mathbb R^d)$”, Proc. Amer. Math. Soc., 132 (2004), 3599–3606 | DOI | MR | Zbl

[20] F. Weisz, “The boundedness of the Hausdorff operator on multi-dimensional Hardy spaces”, Analysis, 24 (2004), 183–195 | DOI | MR | Zbl