Inequalities for Dunkl--Riesz transforms and Dunkl gradient with radial piecewise power weights
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 122-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

A beautiful and meaningful harmonic analysis has been constructed on the Euclidean space $\mathbb{R}^d$ with Dunkl weight. The classical Fourier analysis on $\mathbb{R}^d$ corresponds to the weightless case. The Dunkl–Riesz potential and the Dunkl–Riesz transforms play an important role in the Dunkl harmonic analysis. In particular, they allow one to prove the Sobolev type inequalities for the Dunkl gradient. Earlier we proved $(L^q,L^p)$-inequalities for the Dunkl–Riesz potential with two radial piecewise power weights. For the Dunkl–Riesz transforms, we proved $L^p$-inequality with one radial power weight and, as a consequence, we obtained $(L^q,L^p)$-inequalities for the Dunkl gradient with two radial power weights. In this paper, these results for the Dunkl–Riesz transforms and the Dunkl gradient for radial power weights are generalized to the case of radial piecewise power weights.
Keywords: Dunkl–Riesz potential, Dunkl–Riesz transforms, Dunkl gradient, Sobolev inequality.
@article{CHEB_2021_22_3_a7,
     author = {V. I. Ivanov},
     title = {Inequalities for {Dunkl--Riesz} transforms and {Dunkl} gradient with radial piecewise power weights},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {122--132},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a7/}
}
TY  - JOUR
AU  - V. I. Ivanov
TI  - Inequalities for Dunkl--Riesz transforms and Dunkl gradient with radial piecewise power weights
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 122
EP  - 132
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a7/
LA  - ru
ID  - CHEB_2021_22_3_a7
ER  - 
%0 Journal Article
%A V. I. Ivanov
%T Inequalities for Dunkl--Riesz transforms and Dunkl gradient with radial piecewise power weights
%J Čebyševskij sbornik
%D 2021
%P 122-132
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a7/
%G ru
%F CHEB_2021_22_3_a7
V. I. Ivanov. Inequalities for Dunkl--Riesz transforms and Dunkl gradient with radial piecewise power weights. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 122-132. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a7/

[1] Gorbachev D. V., Ivanov V. I., “Vesovye neravenstva dlya potentsiala Danklya–Rissa”, Chebyshevskii sbornik, 20:1 (2019), 131–147 | MR | Zbl

[2] Rösler M., “Dunkl operators. Theory and applications”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1817, Springer-Verlag, 2002, 93–135 | DOI | MR

[3] Thangavelu S., Xu Y., “Riesz transform and Riesz potentials for Dunkl transform”, J. Comput. Appl. Math., 199 (2007), 181–195 | DOI | MR | Zbl

[4] Gorbachev D. V., Ivanov V. I., Tikhonov S. Yu., “Riesz Potential and Maximal Function for Dunkl transform”, Potential Analysis, 2020 | DOI | MR

[5] Amri B., Sifi M., “Riesz transforms for Dunkl transform”, Annales mathématiques Blaise Pascal, 19:1 (2012), 147–162 | DOI | MR

[6] Ivanov V. I., “Vesovye neravenstva dlya preobrazovanii Danklya–Rissa i gradienta Danklya”, Chebyshevskii sbornik, 21:4 (2020), 97–106 | MR | Zbl

[7] Abdelkefi C., Rachdi M., “Some properties of the Riesz potentials in Dunkl analysis”, Ricerche di Matematica, 64:1 (2015), 195–215 | DOI | MR | Zbl

[8] Hassani S., Mustapha S., Sifi M., “Riesz potentials and fractional maximal function for the Dunkl transform”, J. Lie Theory, 19:4 (2009), 725–734 | MR | Zbl

[9] Velicu A., Hardy-type inequalities for Dunkl operators, 2019, arXiv: 1901.08866 | MR | Zbl

[10] Velicu A., “Hardy-type inequalities for Dunkl operators with applications to many-particle Hardy inequalities”, Communications in Contemporary Mathematics, 23:6 (2021), 2050024 | DOI | MR | Zbl

[11] Stein E.M., “Note on Singular Integrals”, Proc. Amer. Math. Soc., 8:2 (1957), 250–254 | DOI | MR | Zbl