About three-dimensional nets of Smolyak II
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 100-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is the second article in a series dedicated to Smolyak grids. The paper relates to analytical number theory and it deals with the application of number theory to problems of approximate analysis. In this paper, it was shown that for an arbitrary Smolyak grid, the trigonometric sum of the Smolyak grid is $S_{q}(\vec 0)=1$. It follows that the norm of the linear functional of approximate integration on the class $E_s^\alpha$ is equal to the value of the hyperbolic zeta function $\zeta(\alpha|Sm(q,s))$ of the resin grid. It is shown that the hyperbolic zeta function $\zeta(\alpha|Sm(q, s))$ of the Smolyak grid is a Dirichlet series. This raises the question of the analytic continuation of the hyperbolic zeta function $\zeta(\alpha|Sm(q, s))$ of the Smolyak grid as a function of an arbitrary complex $\alpha=\sigma+it$. Since the Smolyak grid belongs to the number of rational grids, it turns out that it has an analytical continuation of the hyperbolic zeta function $\zeta (\alpha|Sm(q, s))$ of the Smolyak grid on the entire complex plane except for the point $\alpha=1$, in which it has a pole of order $s$. It follows from the work that the following questions remain open: is the linear operator $A_{q}$ of weighted grid averages over the Smolyak grid at dimension $s\ge3$ normal? what are the true values of the trigonometric sums $S_{q}(m_1,\ldots,m_s)$ Smolyak grids with dimension $s\ge3$?
Keywords: grid Smolyak, quadrature formulas with grids of Smolyak, interpolation formula with grids of Smolyak.
@article{CHEB_2021_22_3_a6,
     author = {N. N. Dobrovol'skii and D. V. Gorbachev and V. I. Ivanov},
     title = {About three-dimensional nets of {Smolyak} {II}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {100--121},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a6/}
}
TY  - JOUR
AU  - N. N. Dobrovol'skii
AU  - D. V. Gorbachev
AU  - V. I. Ivanov
TI  - About three-dimensional nets of Smolyak II
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 100
EP  - 121
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a6/
LA  - ru
ID  - CHEB_2021_22_3_a6
ER  - 
%0 Journal Article
%A N. N. Dobrovol'skii
%A D. V. Gorbachev
%A V. I. Ivanov
%T About three-dimensional nets of Smolyak II
%J Čebyševskij sbornik
%D 2021
%P 100-121
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a6/
%G ru
%F CHEB_2021_22_3_a6
N. N. Dobrovol'skii; D. V. Gorbachev; V. I. Ivanov. About three-dimensional nets of Smolyak II. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 100-121. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a6/

[1] Bakhvalov N. S., “On approximate computation of multiple integrals”, Vestnik Moskovskogo universiteta, 1959, no. 4, 3–18

[2] Vronskaya G. T., Dobrovol'skii N. N., Standard deviation of a flat mesh, Izdatel'stvo TGPU im L.N. Tolstogo, Tula, Russia, 2012

[3] Dobrovol'skaya L. P., Dobrovol'skii M. N., Dobrovol'skii N. M., Dobrovol'skii N. N., Multidimensional number-theoretic grids and lattices and algorithms for finding optimal coefficients, Izdatel'stvo Tul'skogo gosudarstvennogo pedagogicheskogo universiteta im. L.N. Tolstogo, Tula, Russia, 2012, 284 pp.

[4] Dobrovol'skaya L. P., Dobrovol'skii M. N., Dobrovol'skii N. M., Dobrovol'skii N. N., “The hyperbolic Zeta function of grids and lattices, and calculation of optimal coefficients”, Chebyshevskij sbornik, 13:4 (44) (2012), 4–107 | Zbl

[5] Dobrovol'skaya L. P., Dobrovol'skii N. M., Dobrovol'skii N. N., Ogorodnichuk N. K., Rebrov E. D., Rebrova I. YU., “Some questions of the number-theoretic method in the approximate analysis”, Scientific notes of Orel state University, 2012, no. 6-2, Proceedings of the X international conference “Algebra and number theory: modern problems and applications”, 90–98

[6] Dobrovol'skaya L. P., Dobrovol'skii M. N., Dobrovol'skii N. M., Dobrovol'skii N. N., Rebrova I. YU., “Some questions of the number-theoretic method in the approximate analysis”, Izvestie Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika, 2013, no. 4 (2), 47–52 | Zbl

[7] Dobrovol'skaya L. P., Dobrovol'skii N. M., Simonov A. S., “On the error of approximate integration over modified grids”, Chebyshevskij sbornik, 9:1 (25) (2008), 185–223 | MR | Zbl

[8] Dobrovol'skii M. N., “Estimates of sums over a hyperbolic cross”, Izvestiya Tul'skogo gosudarstvennogo universiteta. Seriya: Matematika. Mekhanika. Informatika, 9:1 (2003), 82–90 | MR

[9] Dobrovol'skii N. M., The hyperbolic Zeta function of lattices, Dep. v VINITI, No 6090-84, 1984

[10] Dobrovol'skii N. M., Evaluation of generalized variance parallelepipedal grids, Dep. v VINITI, No 6089-84, 1984

[11] Dobrovol'skii N. M., On quadrature formulas in classes $E_s^\alpha(c)$ and $H_s^\alpha(c)$, Dep. v VINITI, No 6091-84, 1984

[12] N. M. Dobrovolskii, N. N. Dobrovolskii, V. N. Soboleva, D. K. Sobolev, L. P. Dobrovolskaya, O. E. Bocharova, “O giperbolicheskoi dzeta-funktsii Gurvitsa”, Chebyshevskii sb., 17:3 (2016), 72–105 | Zbl

[13] N. M. Dobrovolskii, N. N. Dobrovolskii, V. N. Soboleva, D. K. Sobolev, E. I. Yushina, “Giperbolicheskaya dzeta-funktsiya reshetki kvadratichnogo polya”, Chebyshevskii sbornik, 16:4(56) (2015), 100–149 | Zbl

[14] Dobrovol'skii N. M., Esayan A. R., Yafaeva R. R., “On grids of Smolyak S A.”, Sovremennye problemy matematiki, mekhaniki, informatiki, Tezisy dokladov Vserossijskoj nauchnoj konferentsii (Tula, Russia, 2002), 18–20

[15] Dobrovol'skii N. M., Manokhin E. V., “Banach spaces of periodic functions”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, 4:3 (1998), 56–67 | MR

[16] Dobrovol'skii N. M., Manokhin E. V., Rebrova I. YU., Roshhenya A. L., “On the continuity of the Zeta function of a grid with weights”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, 7:1 (2001), 82–86 | MR

[17] Dobrovol'skii N. N., “On the number of integer points in a hyperbolic cross at the values of $1\leqslant t21$”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, 9:1 (2003), 91–95 | MR

[18] Dobrovol'skii N. N., “Deviation of two-dimensional Smolyak grids”, Chebyshevskij sbornik, 8:1 (21) (2007), 110–152 | MR | Zbl

[19] Dobrovol'skii N. N., “A trigonometric polynomial on a grid of Smolyak”, Modern problems of mathematics, mechanics, computer science, Proceedings of the international scientific conference (Tula, Russia, 2007), 34–36

[20] Dobrovol'skii N. N., Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, 2013, no. 2-1, 6–18

[21] Dobrovol'skii N. N., Hyperbolic parameter of meshes with weights and its application, Ph.D. Thesis, Moscow State University, Moscow, Russia, 2014

[22] N. N. Dobrovolskii, D. V. Gorbachev, V. I. Ivanov, “O trekhmernykh setkakh Smolyaka I”, Chebyshevckii sbornik, 20:3 (2019), 193–219 | Zbl

[23] O. V. Kiseleva, “On the Korobov problem for modified resin grids”, Chebyshevskij sbornik, 8:4 (24) (2007), 50–104 | Zbl

[24] Korobov N. M., “Approximate evaluation of multiple integrals by using methods of the theory of numbers”, Doklady Akademii nauk SSSR, 1957, no. 6, 1062–1065 | Zbl

[25] Korobov N. M., “The evaluation of multiple integrals by method of optimal coefficients”, Vestnik Moskovskogo universiteta, 1959, no. 4, 19–25

[26] Korobov N. M., “On approximate computation of multiple integrals”, Doklady Akademii nauk SSSR, 124:6 (1959), 1207–1210 | Zbl

[27] Korobov N. M., “Properties and calculation of optimal coefficients”, Doklady Akademii nauk SSSR, 132:5 (1960), 1009–1012 | Zbl

[28] Korobov N. M., Number-theoretic methods in approximate analysis, Fizmatgiz, Russia, 1963

[29] Korobov N. M., “Quadrature formulas with combined grids”, Matematicheskie zametki, 55:2 (1994), 83–90 | MR | Zbl

[30] Korobov N. M., Number-theoretic methods in approximate analysis, 2nd ed, MTSNMO, Russia, 2004

[31] I. Yu. Rebrova, V. N. Chubarikov, N. N. Dobrovol'skii, M. N. Dobrovol'skii, N. M. Dobrovol'skii, “On classical number-theoretic nets”, Chebyshevskii sbornik, 20:3 (2018), 118–176 | MR | Zbl

[32] Smolyak S. A., “Quadrature and interpolation formulas on tensor products of some classes of functions”, Doklady Akademii nauk SSSR, 148:5 (1963), 1042–1045 | Zbl

[33] Sobol' I. M., Multidimensional quadrature formulas and Haar functions, Nauka, USSR, 1969

[34] E. K. Titchmarsh, Teoriya dzeta-funktsii Rimana, IL, M., 1952, 407 pp.

[35] Frolov K. K., “Upper bounds on the error of quadrature formulas on classes of functions”, Doklady Akademii nauk SSSR, 231:4 (1976), 818–821 | MR | Zbl

[36] Frolov K. K., Quadrature formulas on classes of functions, Ph. D. Thesis, Vychislitel'nyj tsentr Akademii Nauk SSSR, Moscow, USSR, 1979 | MR

[37] Chandrasekharan K., Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, M., 1974, 188 pp.

[38] Dobrovolskaya L. P., Dobrovolsky M. N., Dobrovol'skii N. M., Dobrovolsky N. N., “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems, Solid Mechanics and Its Applications, 211, 2014, 23–62 | DOI | MR | Zbl

[39] H. Faure, “Discrepance de suites associees a un systeme denumeration (en dimention s)”, Acta Arith., 41 (1982), 337–351 | DOI | MR | Zbl

[40] J. H. Halton, “On the efficiency of certain quasirandom sequences of points in evaluating multidimensional integrals”, Numerische Math., 27:2 (1960), 84–90 | DOI | MR

[41] J. M. Hammersley, “Monte-Carlo methods for sobving multivariable problems”, Proc. Acad. Sci., 86:4 (1960), 844–874 | MR | Zbl

[42] H. Weyl, “Uber die Gleichverteilung von Zahlen mod. Eins”, Math. Ann., 77 (1916), 313–352 ; Veil G., Matematika. Teoreticheskaya fizika, Nauka, M., 1984 | DOI | MR | Zbl