Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_3_a5, author = {E. Deza and B. Mhanna}, title = {Quesitions of enumeration of spanning forests of selected graphs}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {77--99}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a5/} }
E. Deza; B. Mhanna. Quesitions of enumeration of spanning forests of selected graphs. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 77-99. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a5/
[1] Vorobev N.N., Chisla Fibonachchi, Nauka, M., 1978 | MR
[2] Deza M.M., Deza E.I., Dyutur Sikirich M., “Poliedralnye konstruktsii, svyazannye s kvazi-metrikami”, Chebyshevskii sbornik, 16:2 (2015), 79–92 | MR | Zbl
[3] Deza E.I., Mkhanna B., “O spetsialnykh svoistvakh nekotorykh kvazimetrik”, Chebyshevskii sbornik, 21:1 (2020), 145–164 | MR | Zbl
[4] Potapov V.N., Teoriya informatsii. Kodirovanie diskretnykh veroyatnostnykh istochnikov, NGU, Novosibirsk, 1999
[5] Kharari F., Teoriya grafov, URSS, M., 2003
[6] Chebotarev P., A graph theoretic interpretation of the mean first passage times, arXiv: math.PR/0701359
[7] Chebotarev P., “Spanning forest and the Golden ratio”, Discrete Applied Mathematics, 156 (2008), 813–821 | DOI | MR | Zbl
[8] Chebotarev P., “Studying new classes of graph metrics”, Proceedings of the SEE Conference "Geometric Science of Information", GSI-2013, Lecture Notes in Computer Science, 8085, eds. F. Nielsen, F. Barbaresco, 2013, 207–214 | DOI | MR | Zbl
[9] Chebotarev P., Agaev R., “Forest matrices around the Laplacian matrix”, Linear Algebra and its Applications, 356 (2002), 253–274 | DOI | MR | Zbl
[10] Chebotarev P., Deza E., “Hitting time quasi-metric and its forest representation”, Optimization Letters, 14 (2020), 291–307 | DOI | MR | Zbl
[11] Chebotarev P.Y., Shamis E.V., “On proximity measures for graph vertices”, Automation and Remote Control, 59 (1998), 1443–1459 | MR | Zbl
[12] Deza E., Deza M., Dutour Sikirić, Generalizations of Finite Metrics and Cuts, World Scientific, 2016 | MR | Zbl
[13] Deza M., Deza E., “Cones of partial metrics”, Contributions to Discrete Mathematics, 6 (2011), 26–47 | MR | Zbl
[14] Deza M. M., Deza E., Encyclopedia of Distances, Springer, Berlin–Heidelberg, 2016 | MR | Zbl
[15] Deza M., Deza E., Vidali J., “Cones of weighted and partial metrics”, Advances in Algebraic Structures, Proceedings of the Internat. Conference on Algebra (2010), 2012, 177–197 | MR | Zbl
[16] Kirkland S.J., Neumann M., Group inverses of M-matrices and their applications, CRC Press, 2012 | MR
[17] Leighton T., Rivest R.L., The Markov chain tree theorem, Computer Science Technical Report MIT/LCS/TM-249, Laboratory of Computer Science, MIT, Cambridge, Mass, 1983
[18] Meyer Jr., C. D., “The role of the group generalized inverse in the theory of finite Markov chains”, SIAM Review, 17 (1975), 443–464 | DOI | MR | Zbl
[19] Wilson W., “On quasi-metric spaces”, American Journal of Mathematics, 53 (1931), 675–684 | DOI | MR