Inversion formula for Dirichlet series and its application
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 57-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

A contour integration method, used to study the asymptotic of the sums of coefficients of Dirichlet series, is based on the Inversion formula. It allows you to express the sum of the coefficients in terms of the sum of the series. This approach gives effective estimates if the abscissa of absolute convergence $\sigma_a\ge 1$. In some cases, when studying arithmetical functions in generating Dirichlet series, this value is less than $1$. As a rule, in this case, the Tauberian Delange theorem, which gives only the main term of asymptotic, is applied. However, generating Dirichlet series have better analytical properties than we need for the Delange theorem application. The contour integration method allows to count on precise results, but it need the inversion formula which is effective for series with $\sigma_a 1$. In this paper the such inversion formula is presented and is proved to be an effective tool on examining the distribution of $d(n)$ function values in the residue classes coprim with a module. W. Narkievicz used Delange theorem to obtain the main term of the asymptotic for frequency of hits of the values of function $d(n)$ in residue classes. Application of the inversion formula allowed us to obtain more precise results.
Keywords: a number of divisors of integer, Dirichle series, the inversion formula.
@article{CHEB_2021_22_3_a4,
     author = {L. A. Gromakovskaya and B. M. Shirokov},
     title = {Inversion formula for {Dirichlet} series and its application},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {57--76},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a4/}
}
TY  - JOUR
AU  - L. A. Gromakovskaya
AU  - B. M. Shirokov
TI  - Inversion formula for Dirichlet series and its application
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 57
EP  - 76
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a4/
LA  - ru
ID  - CHEB_2021_22_3_a4
ER  - 
%0 Journal Article
%A L. A. Gromakovskaya
%A B. M. Shirokov
%T Inversion formula for Dirichlet series and its application
%J Čebyševskij sbornik
%D 2021
%P 57-76
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a4/
%G ru
%F CHEB_2021_22_3_a4
L. A. Gromakovskaya; B. M. Shirokov. Inversion formula for Dirichlet series and its application. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 57-76. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a4/

[1] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967

[2] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1975 | MR

[3] Narckiewicz W., “On distribution of values of multiplicative functions in residue classes”, Acta Arithm., 12:3 (1967), 269–279 | DOI | MR

[4] Changa M. E., “O chislakh, kolichestvo prostykh delitetelei kotorykh prinadlezhit zadannomu klassu vychetov”, Izv. RAN, Seriya matem., 83:1 (2019), 192–202 | MR | Zbl

[5] Changa M. E., Metody analiticheskoi teorii chisel, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2013, 228 pp.

[6] Fomenko O.M., “Raspredelenie znachenii multiplikativnykh funktsii po prostomu modulyu”, Zapiski nauch. sem. LOMI, 93, no. 6, 1980, 218–224 | Zbl

[7] Titchmarsh E., Teoriya funktsii, Nauka, M., 1980

[8] Delange H., “Généralisation du théorème de Ikeara”, Ann. Sci. Ecole norm. super., 71 (1954), 213–242 | DOI | MR | Zbl

[9] Gromakovskaya L. A., Shirokov B. M., “Raspredelenie chisla beskvadratnykh delitelei v klassakh vychetov”, Izv. VUZov, Matematika, 2020:3, 3–11 | MR | Zbl

[10] Borevich Z.I., Shafarevich I.R., Teoriya chisel, Nauka, M., 1972

[11] Van der Varden B. L., Algebra, Nauka, M., 1976 | MR

[12] Leng S., Algebra, Nauka, M., 1968

[13] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Fizmatgiz, M., 1958 | MR