On a property of the Fenchel transform
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 474-478.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the class of functions $\Phi \colon \mathbb{R} \to [0, + \infty]$, which are lower semicontinuous, even, convex and $ \Phi (0) = 0 $. The Fenchel transform $\Psi$ from $\Phi$ also belongs to this class of functions. We will define functions that play the role of derivatives for all functions from our class and prove that these functions are mutually inverse in a generalized sense.
Keywords: utility maximization, Orlicz space, Fenchel transform.
@article{CHEB_2021_22_3_a32,
     author = {A. A. Farvazova},
     title = {On a property of the {Fenchel} transform},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {474--478},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a32/}
}
TY  - JOUR
AU  - A. A. Farvazova
TI  - On a property of the Fenchel transform
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 474
EP  - 478
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a32/
LA  - ru
ID  - CHEB_2021_22_3_a32
ER  - 
%0 Journal Article
%A A. A. Farvazova
%T On a property of the Fenchel transform
%J Čebyševskij sbornik
%D 2021
%P 474-478
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a32/
%G ru
%F CHEB_2021_22_3_a32
A. A. Farvazova. On a property of the Fenchel transform. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 474-478. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a32/

[1] Rao M. M., Ren Z. D., Theory of Orlicz Spaces, Marcel Dekker, N.Y., 1991 | MR | Zbl

[2] Embrechts P., Hofert M., “A note on generalized inverses”, Math. Meth. of Oper. Res., 77:3 (2013), 423–432 | DOI | MR | Zbl

[3] Meyer P.-A., Probability and potentials, Mir, M., 1973