Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_3_a31, author = {Kh. S. Taramova}, title = {On the global solvability of the {Cahn-Hilliard} equation}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {467--473}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a31/} }
Kh. S. Taramova. On the global solvability of the Cahn-Hilliard equation. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 467-473. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a31/
[1] J.W. Cahn, J.E. Hilliard, “Free energy of a non-uniform system, Part I: Interfacial free energy”, J. Chemical Physics, 28:1 (1958), 258–267 | DOI | Zbl
[2] Ch. Elliot, S. Zheng, “On the Chan–Hilliard equation”, Arch. Rat. Mech. Anal., 96:4 (1986), 339–357 | DOI | MR | Zbl
[3] F. Bai, C.M. Elliott, A. Gardiner, A. Spence, A.M. Stuart, “The viscous Cahn-Hilliard equation I. Computations”, Nonlinearity, 1995, no. 8, 131–160 | DOI | MR | Zbl
[4] C.M. Elliott, A.M. Stuart, “Viscous Cahn-Hilliard Equation II. Analysis”, Journal of differential equations, 128 (1996), 387–414 | DOI | MR | Zbl
[5] Gal C., “Well-Posedness and Long Time Behavior of the Non-Isothermal Viscous Cahn-Hilliard Equation with Dynamic Boundary Conditions”, Dynamics of PDE, 5:1 (2008), 39–67 | MR | Zbl
[6] P.I. Plotnikov, “Predelnyi perekhod po malomu parametru v uravneniyakh Kana–Khillarda”, Sib. matem. zhurn., 38:3 (1997), 638–656 | MR | Zbl
[7] E.V. Radkevich, M.V. Zakharchenko, “Asimptoticheskoe reshenie rasshirennoi modeli Kana–Khillarda”, Sovremennaya matematika i ee prilozheniya, 2 (2003), 121–138
[8] E.V. Radkevich, “Korrektnost matematicheskikh modelei mekhaniki sploshnykh sred i termodinamika”, Sovremennaya matematika i ee prilozheniya, 3 (2003), 3–145
[9] I.S. Menshov, Ch.Chzhan, “Metod skvoznogo rascheta mezhfaznykh granits v dvukhfaznykh techeniyakh na osnove uravneniya Kana–Khillarda”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 60:3 (2020), 476–488 | Zbl
[10] G.V. Demidenko, S.V. Uspenskii, Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauch. kn., Novosibirsk, 1998, 436 pp. | MR
[11] A.G. Sveshnikov, A.B. Alshin, M.O. Korpusov, Yu.D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007, 736 pp.
[12] Kh.G. Umarov, “O razreshimosti odnomernogo uravneniya Kana-Khillarda s vyazkostyu v prostranstve nepreryvnykh ogranichennykh funktsii na vsei osi”, Nauchnye vedomosti BelGU. Seriya: Matematika. Fizika, 2012, no. 17(28), 91–101
[13] N. Danford, Dzh.T. Shvarts, Lineinye operatory. Obschaya teoriya, IL, M., 1962, 895 pp.
[14] T.B. Benjamin, J.L. Bona, J.J. Mahony, “Model equations for long waves in nonlinear dispersive systems”, Philos. Trans. R. Soc. London, 272 (1972), 47–78 | DOI | MR | Zbl
[15] B.P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, MGU, M., 1998, 480 pp. | MR