Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_3_a28, author = {D. V. Gorbachev and N. N. Dobrovolskii}, title = {Approximation by spherical polynomials in $L^{p}$ for $p<1$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {453--456}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a28/} }
D. V. Gorbachev; N. N. Dobrovolskii. Approximation by spherical polynomials in $L^{p}$ for $p<1$. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 453-456. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a28/
[1] Brown L.G., Lucier B.J., “Best approximations in $L^{1}$ are near best in $L^{p}$, $p1$”, Proc. Amer. Math. Soc., 120:1 (1994), 97–100 | MR | Zbl
[2] Dai F., Gorbachev D., Tikhonov S., “Estimates of the asymptotic Nikolskii constants for spherical polynomials”, Journal of Complexity, 65 (2021) | DOI | MR
[3] Gorbachev D.V., Dobrovolskii N.N., “Nikolskii–Bernstein constants in $L^{p}$ on the sphere with Dunkl weight”, Chebyshevskii Sbornik, 21:4 (2020), 302–307 (In Russ.) | MR | Zbl
[4] Gorbachev D.V., Mart'yanov I.A., “Bounds of the Nikol'skii polynomial constants in $L^{p}$ with Gegenbauer weight”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 4, 2020, 126–137 (In Russ.) | MR