Approximation by spherical polynomials in $L^{p}$ for $p1$
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 453-456
Cet article a éte moissonné depuis la source Math-Net.Ru
Based on recently proved estimates for the $L^{1}$-Nikolskii constants for $\mathbb{S}^{d}$ and $\mathbb{R}^{d}$, effective bounds for the constant $K$ are given in the following inequality of the type Brown–Lucier for functions $f\in L^{p}(\mathbb{S}^{d})$, $0$: $$ \|f-E_{1}f\|_{p}\le (1+2K)^{1/p}\inf_{u\in \Pi_{n}^{d}}\|f-u\|_{p}, $$ where $\Pi_{n}^{d}$ is the subspace of spherical polynomials, $E_{1}f$ is a best approximant of $f$ from $\Pi_{n}^{d}$ in the metric $L^{1}(\mathbb{S}^{d})$. The results are generalized to the case of the Dunkl weight.
Keywords:
spherical polynomial, best approximant, Dunkl weight.
Mots-clés : Nikoskii constant
Mots-clés : Nikoskii constant
@article{CHEB_2021_22_3_a28,
author = {D. V. Gorbachev and N. N. Dobrovolskii},
title = {Approximation by spherical polynomials in $L^{p}$ for $p<1$},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {453--456},
year = {2021},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a28/}
}
D. V. Gorbachev; N. N. Dobrovolskii. Approximation by spherical polynomials in $L^{p}$ for $p<1$. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 453-456. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a28/
[1] Brown L.G., Lucier B.J., “Best approximations in $L^{1}$ are near best in $L^{p}$, $p1$”, Proc. Amer. Math. Soc., 120:1 (1994), 97–100 | MR | Zbl
[2] Dai F., Gorbachev D., Tikhonov S., “Estimates of the asymptotic Nikolskii constants for spherical polynomials”, Journal of Complexity, 65 (2021) | DOI | MR
[3] Gorbachev D.V., Dobrovolskii N.N., “Nikolskii–Bernstein constants in $L^{p}$ on the sphere with Dunkl weight”, Chebyshevskii Sbornik, 21:4 (2020), 302–307 (In Russ.) | MR | Zbl
[4] Gorbachev D.V., Mart'yanov I.A., “Bounds of the Nikol'skii polynomial constants in $L^{p}$ with Gegenbauer weight”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 4, 2020, 126–137 (In Russ.) | MR