Approximation by spherical polynomials in $L^{p}$ for $p1$
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 453-456

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on recently proved estimates for the $L^{1}$-Nikolskii constants for $\mathbb{S}^{d}$ and $\mathbb{R}^{d}$, effective bounds for the constant $K$ are given in the following inequality of the type Brown–Lucier for functions $f\in L^{p}(\mathbb{S}^{d})$, $0$: $$ \|f-E_{1}f\|_{p}\le (1+2K)^{1/p}\inf_{u\in \Pi_{n}^{d}}\|f-u\|_{p}, $$ where $\Pi_{n}^{d}$ is the subspace of spherical polynomials, $E_{1}f$ is a best approximant of $f$ from $\Pi_{n}^{d}$ in the metric $L^{1}(\mathbb{S}^{d})$. The results are generalized to the case of the Dunkl weight.
Keywords: spherical polynomial, best approximant, Nikoskii constant, Dunkl weight.
@article{CHEB_2021_22_3_a28,
     author = {D. V. Gorbachev and N. N. Dobrovolskii},
     title = {Approximation by spherical polynomials in $L^{p}$ for $p<1$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {453--456},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a28/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - N. N. Dobrovolskii
TI  - Approximation by spherical polynomials in $L^{p}$ for $p<1$
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 453
EP  - 456
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a28/
LA  - ru
ID  - CHEB_2021_22_3_a28
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A N. N. Dobrovolskii
%T Approximation by spherical polynomials in $L^{p}$ for $p<1$
%J Čebyševskij sbornik
%D 2021
%P 453-456
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a28/
%G ru
%F CHEB_2021_22_3_a28
D. V. Gorbachev; N. N. Dobrovolskii. Approximation by spherical polynomials in $L^{p}$ for $p<1$. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 453-456. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a28/