Optimal design of the damping properties of porous metal composites
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 443-447.

Voir la notice de l'article provenant de la source Math-Net.Ru

The maximum value of the vibration decrement of a porous metal composite made using 3D technology is determined. The influence of porosity on the damping and stiffness properties of the composite is studied. The optimal porosity value is obtained, which provides a maximum of the vibration decrement at a significant load level on the sample. The results of numerical calculation of the decrement for a composite made of chromium-nickel porous steel are presented.
Keywords: stress amplitude, decrement, damping properties, metallic porous composite, statistical model.
@article{CHEB_2021_22_3_a26,
     author = {I. K. Arkhipov and V. I. Abramova and O. V. Kuzovleva and A. E. Gvozdev and G. V. Semenova},
     title = {Optimal design of the damping properties of porous metal composites},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {443--447},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a26/}
}
TY  - JOUR
AU  - I. K. Arkhipov
AU  - V. I. Abramova
AU  - O. V. Kuzovleva
AU  - A. E. Gvozdev
AU  - G. V. Semenova
TI  - Optimal design of the damping properties of porous metal composites
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 443
EP  - 447
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a26/
LA  - ru
ID  - CHEB_2021_22_3_a26
ER  - 
%0 Journal Article
%A I. K. Arkhipov
%A V. I. Abramova
%A O. V. Kuzovleva
%A A. E. Gvozdev
%A G. V. Semenova
%T Optimal design of the damping properties of porous metal composites
%J Čebyševskij sbornik
%D 2021
%P 443-447
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a26/
%G ru
%F CHEB_2021_22_3_a26
I. K. Arkhipov; V. I. Abramova; O. V. Kuzovleva; A. E. Gvozdev; G. V. Semenova. Optimal design of the damping properties of porous metal composites. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 443-447. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a26/

[1] Khusu A. P., “O nekotorykh vstrechayuschikhsya v tekhnike funktsionalakh, zadannykh na protsessakh”, Vestnik LGU, 1956, no. 1, 3–25

[2] Khusu A. P., “O nekotorykh funktsionalakh na sluchainykh polyakh.”, Vestnik LGU, 1957, no. 1, 11–33

[3] Shermergor T. D., Teoriya uprugosti mikroneodnorodnykh sred, Nauka, M., 1977, 399 pp.

[4] Arkhipov I. K., Abramova V. I., Gvozdev A. E., Kolmakov A. G., Panin A. V., “Modelirovanie mikroplastichnosti i mekhanicheskogo povedeniya poristykh materialov”, Deformatsiya i razrushenie materialov, 2021, no. 1, 23–29

[5] Arkhipov I. K., Abramova V. I., “Opredelenie kontsentratsii mikroplasticheskikh zon v kompozite po amplitudnoi zavisimosti dekrementa kolebanii”, Izvestiya TulGU. Tekhnicheskie nauki, 2019, no. 3, 490–493

[6] Arkhipov I. K., Golovin S. A., Petrushin G. D., “Rasseyanie energii v kompozitsionnykh materialakh”, Problemy prochnosti, no. 8, 92–94

[7] Troschenko V. T., “K voprosu o rasseyanii energii v materiale”, Fizika tverdogo tela, 1960, no. 6, 1060–1069