From the algebraic methods of Diophantus--Fermats--Euler to the arithmetic of algebraic curves: about the history of diophantine equations after Euler
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 383-404.

Voir la notice de l'article provenant de la source Math-Net.Ru

Talking about the Diophantine analysis’ history, namely, the problem of rational solutions of Diophantine equations, we should note the longevity of the algebraic approach, which goes back to Diophantus’ “Arithmetica”. Indeed, after the European mathematicians of the second half of the XVI century became acquainted with Diophantus’ oeuvre, algebraic apparatus of variable changes, substitutions and transformations turned into the main tool of finding rational solutions of Diophantine equations. Despite the limitations of this apparatus, there were obtained important results on rational solutions of quadratic, cubic and quartic indeterminate equations in two unknowns. Detailed historico-mathematical analysis of these results was done, inter alia, by I. G. Bashmakova and her pupils. The paper examines the departure from this algebraic treatment of Diophantine equations, typical for most of the research up to the end of XIX century, towards a more general viewpoint on this subject, characterized also by radical expansion of the tools used in the Diophantine equations’ investigations. The works of A. L. Cauchy, C. G. J. Jacobi and É. Lucas, where this more general approach was developed, are analyzed. Special attention is paid to the works of J. J. Sylvester on Diophantine equations and the paper “On the Theory of Rational Derivation on a Cubic Curve” by W. Story, which were not in the focus of the research on history of the Diophantine analysis and where apparatus of algebraic curves was used in a pioneering way.
Keywords: Diophantine equations, arithmetic of algebraic curves, rational points, elliptic curve, J. J. Sylvester, W. E. Story.
@article{CHEB_2021_22_3_a22,
     author = {T. A. Lavrinenko and A. A. Belyaev},
     title = {From the algebraic methods of {Diophantus--Fermats--Euler} to the arithmetic of algebraic curves: about the history of diophantine equations after {Euler}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {383--404},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a22/}
}
TY  - JOUR
AU  - T. A. Lavrinenko
AU  - A. A. Belyaev
TI  - From the algebraic methods of Diophantus--Fermats--Euler to the arithmetic of algebraic curves: about the history of diophantine equations after Euler
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 383
EP  - 404
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a22/
LA  - ru
ID  - CHEB_2021_22_3_a22
ER  - 
%0 Journal Article
%A T. A. Lavrinenko
%A A. A. Belyaev
%T From the algebraic methods of Diophantus--Fermats--Euler to the arithmetic of algebraic curves: about the history of diophantine equations after Euler
%J Čebyševskij sbornik
%D 2021
%P 383-404
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a22/
%G ru
%F CHEB_2021_22_3_a22
T. A. Lavrinenko; A. A. Belyaev. From the algebraic methods of Diophantus--Fermats--Euler to the arithmetic of algebraic curves: about the history of diophantine equations after Euler. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 383-404. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a22/

[1] Poincaré H., “Sur les propriétés arithmétiques des courbes algébriques”, J. Math. Pures Appl. Ser. 5, 7 (1901), 161–233 ; Puankare A., “Ob arifmeticheskikh svoistvakh algebraicheskikh krivykh”, Izbrannye trudy, v. 2, M., 1972, 901–960 | Zbl | MR

[2] Bashmakova I. G., Slavutin E. I., Istoriya diofantova analiza ot Diofanta do Ferma, Nauka, M., 1984 ; ЛЕНАНД, М., 2015 | MR

[3] Hofmann J. E., “Über zahlentheoretische Methoden Fermats und Eulers, ihre Zusammenhänge und ihre Bedeutung”, Arch. Hist. Exact Sci., 1:2 (1961), 122–159 | DOI | MR | Zbl

[4] Weil A., Number Theory. An Approach through History: from Hammurapi to Legendre, Birkhäuser, Boston, etc., 1983 ; reprint Birkhäuser, Boston, 2007 | MR

[5] Lavrinenko T. A., Neopredelennye uravvneniya v rabotakh L. Eilera i matematikov XIX veka, dis. kand. fiz.-mat. nauk: 07.00.10, M., 1984, 166 pp.

[6] Lavrinenko T. A., “Diofantovy uravneniya v rabotakh L. Eilera”, Razvitie idei Leonarda Eilera i sovremennaya nauka, Sbornik statei, Nauka, M., 1988, 153–165 | MR

[7] Euler L., Vollständige Anleitung zur Algebra, Petersbourg, 1770 ; reprint: Stuttgart, 1959; Leonhardi Euleri Opera omnia, ser. 1, 1, Lipsiae et Berolini, 1911, 209–498 | MR

[8] Euler L., Opera postuma mathematica et physica, v. 1, Petropoli, 1862 | MR

[9] Lavrinenko T. A., “Rekonstruktsii metodov polucheniya chetyrekh formul iz neopublikovannykh rukopisei Eilera po diofantovu analizu”, Matematika, mekhanika, Istoriya i metodologiya estestvennykh nauk, XXXII, Izd-vo Moskovskogo universiteta, M., 1986, 111–120 | MR

[10] Lavrinenko T. A., “Reshenie neopredelennykh uravnenii 3-i i 4-i stepenei v pozdnikh rabotakh Eilera”, Istoriko-matematicheskie issledovaniya, 27, M., 1983, 67–79

[11] Lagrange J. L., “Sur quelques problèmes de l'analyse de Diophante”, Nouveaux Mémoires de l'Ac. royale des sc. et belle-lettre de Berlin, 1777, 377–398; Lagrange J. L., Oeuvres, т. 4, Paris, 1869 | MR

[12] Lavrinenko T. A., “Metody resheniya neopredelennykh uravnenii v ratsionalnykh chislakh v XVIII–XIX vekakh”, Istoriko-matematicheskie issledovaniya, 28, M., 1985, 202–223 | MR | Zbl

[13] Cauchy A., “Sur la resolution de quelques équations indéterminées en nombres entiers”, Exercices de mathématiques, Paris, 1826, 286–315; Cauchy A., Ouevres complètes (II), v. 6, Paris, 1887

[14] Jacobi C., “De Usu Theoriae Integralium Ellipticorum et Integralium Abelianorum in Analysi Diophantea”, Crelle Journal für die Reine und Angewandte Mathematik, 13 (1835), 353–355 ; Jacobi C., Gesammelte Werke, v. 2, Berlin, 1882, 53–55 | MR | Zbl

[15] Bashmakova I. G., “Arithmetic of algebraic curves from Diophantus to Poincaré”, Historia Mathematica, 8:4 (1981), 393–416 | DOI | MR | Zbl | Zbl

[16] Newton I., Mathematical Papers, v. 4, ed. D.T.Whiteside, Cambridge, 1971 | MR | Zbl

[17] Sylvester J. J., “An Account of a Discovery in the Theory of Numbers Relative to the Equation $Ax^3+By^3+Cz^3=Dxyz$”, Philosophical Magazine, 31 (1847), 189–191; Sylvester J. J., Collected Mathematical Papers, v. 1, Cambridge Univ. Press, 107–109

[18] Sylvester J. J., “On the Equation in Numbers $Ax^3+By^3+Cz^3=Dxyz$, and Its Associate System of Equations”, Phil. Mag., 31 (1847), 293–296; Sylvester J. J., Collected Mathematical Papers, v. 1, Cambridge Univ. Press, 110–113

[19] Sylvester J. J., “On the General Solution (in Certain Cases) of the Equation $ x^3+y^3+Az^3=Mxyz \; \ $ c.”, Phil. Mag., 31 (1847), 467–471; Sylvester J. J., Collected Mathematical Papers, v. 1, Cambridge Univ. Press, 114–118

[20] Sylvester J. J., “Recherches sur les solutions en nombres entiers positifs ou négatifs de l'équation cubique homogène à trois variables”, Annali di scienze matematiche e fisiche, 7 (1856), 398–400; Sylvester J. J., Collected Mathematical Papers, v. 2, Cambridge Univ. Press, 63–64

[21] Sylvester J. J., “Note on the Algebraical Theory of Derivative Points of Curves of the Third Degree”, Phil. Mag., 16 (1858), 116–119 ; Sylvester J. J., Collected Mathematical Papers, v. 2, Cambridge Univ. Press, 107–109 | DOI

[22] Parshall K., James Joseph Sylvester: Life and Work in Letters, Oxford University Press, Oxford, 1998 | MR | Zbl

[23] Sylvester J. J., “On Certain Ternary Cubic-Form Equations”, Amer. J. Math., 2 (1879), 280–285 ; 357–393; 3 (1880), 58–88 ; 179–189; Sylvester J. J., Collected Mathematical Papers, v. 3, Cambridge Univ. Press, 312–391 | DOI | MR | DOI

[24] Lucas É., “Sur l'Analyse indéterminée du troisième degré et sur la question 802 (Sylvester)”, Nouv. ann. math.. 2e série, 17 (1878), 507–514 | Zbl

[25] Lavrinenko T. A., “Solving an Indeterminate Third Degree Equation in Rational Numbers. Sylvester and Lucas”, Revue d'Histoire des Mathématiques (Société Mathématique de France), 8:1 (2002), 67–111 | MR | Zbl

[26] Lavrinenko T. A., Mikhno G. A., “O vvedenii gruppovoi struktury na mnozhestve tochek kubiki i reshenii diofantovykh uravnenii”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2014, no. 4, 95–104

[27] Parshall K., Rowe D., The Emergence of the American Mathematical Research Community 1876–1900, eds. J. J. Sylvester, Felix Klein, E. H. Moore, American Mathematical Society, Providence, 1994 | MR | Zbl

[28] Cooke R., Rickey F. W. E., “Story of Hopkins and Clark”, A Century of Mathematics in America, v. III, ed. P. Duren, American Mathematical Society, Providence, 1989, 29–76 | MR

[29] Story W. E., “On the Theory of Rational Derivation on a Cubic Curve”, Amer. J. Math. (3), 1880, 356–387 | DOI | MR

[30] Clebsch A., “Über einen Satz von Steiner und einige Punkte der Theorie der Curven dritter Ordnung”, Crelle J. für die r. und ang. Math., 63 (1864), 94–121 | MR | Zbl

[31] Hilbert D., Hurwitz A., “Über die diophantischen Gleichungen vom Geschlecht Null”, Acta Mathematica, 14 (1890), 217–224 | DOI | MR

[32] Noether M., “Rationale Ausführung der Operationen in der Theorie der algebraischen Funktionen”, Math. Annalen, 23 (1884), 311–358 | DOI | MR

[33] Dickson L. E., History of the Theory of Numbers, v. 2, Diophantine Analysis, Washington, 1920 ; reprint Chelsea, Bronx, 1971 | MR | MR