About application of number-theoretic grids in problems of acoustics
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 368-382.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article discusses spherical diffraction problem monochromatic sound wave absolutely rigid sphere. To represent the scattered field, a representation in the form of a Kirchhoff integral is used. This leads to the need to solve the Fredholm integral equation of the second kind to determine the velocity potential in the scattered wave on the surface of the scatterer. It is shown that the use of quadrature formulas based on number-theoretic grids allows you to reduce the number of calculations for the approximate calculation of integrals, when solving the integral equation and when calculating the scattered field on the surface of the sphere and in the far field. This method was compared with the simple cell method, which takes into account the mechanical formulation of the problem and has the same order of accuracy. Estimation of the accuracy of calculating the pressure on the surface of the sphere and the form-function of the scattered field based on the solution of the integral equation was carried out by comparison with the analytical solution based on the expansion in spherical wave functions.
Keywords: diffraction, spherical sound wave, linear integral equations, interpolation, interpolation polynomials, quadrature formulas, periodization, Smolyak grids, parallelepiped grids.
@article{CHEB_2021_22_3_a21,
     author = {N. N. Dobrovol'skii and S. A. Skobel'tsyn and L. A. Tolokonnikov and N. V. Larin},
     title = {About application of number-theoretic grids in problems of acoustics},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {368--382},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a21/}
}
TY  - JOUR
AU  - N. N. Dobrovol'skii
AU  - S. A. Skobel'tsyn
AU  - L. A. Tolokonnikov
AU  - N. V. Larin
TI  - About application of number-theoretic grids in problems of acoustics
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 368
EP  - 382
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a21/
LA  - ru
ID  - CHEB_2021_22_3_a21
ER  - 
%0 Journal Article
%A N. N. Dobrovol'skii
%A S. A. Skobel'tsyn
%A L. A. Tolokonnikov
%A N. V. Larin
%T About application of number-theoretic grids in problems of acoustics
%J Čebyševskij sbornik
%D 2021
%P 368-382
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a21/
%G ru
%F CHEB_2021_22_3_a21
N. N. Dobrovol'skii; S. A. Skobel'tsyn; L. A. Tolokonnikov; N. V. Larin. About application of number-theoretic grids in problems of acoustics. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 368-382. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a21/

[1] S. M. Rao, “An iterative method to solve acoustic scattering problems using a boundary integral equation”, J. Acoust. Soc. Am., 130:4 (2011), 1792–1798 | DOI

[2] J. A. Fawcett, “Scattering from a finite cylinder near an interface”, J. Acoust. Soc. Am., 136:2 (2014), 485–493 | DOI

[3] A. M. A. Alsnayyan, J. Li, S. Hughey, A. Diaz, B. Shanker, “Efficient isogeometric boundary element method for analysis of acoustic scattering from rigid bodies”, J. Acoust. Soc. Am., 147:5 (2020), 3275–3284 | DOI

[4] E. L. Shenderov, Izluchenie i rasseyanie zvuka, Sudostroenie, L., 1989, 304 pp.

[5] E. L. Shenderov, Volnovye zadachi gidroakustiki, Sudostroenie, L., 1972, 352 pp.

[6] N. N. Kalitkin, Chislennye metody, Nauka, M., 1978, 512 pp.

[7] E. A. Ivanov, Difraktsiya elektromagnitnykh voln na dvukh telakh, Nauka i tekhnika, Minsk, 1968, 584 pp.

[8] I. Yu. Rebrova, V. N. Chubarikov, N. N. Dobrovolskii, M. N. Dobrovolskii, N. M. Dobrovolskii, “O klassicheskikh teoretiko-chislovykh setkakh”, Chebyshevckii sbornik, 19:4 (2018), 118–176 | MR | Zbl

[9] N. M. Korobov, “Primenenie teoretiko-chislovykh setok v integralnykh uravneniyakh i interpolyatsionnykh formulakh”, Sbornik statei. Posvyaschaetsya akademiku Mikhailu Alekseevichu Lavrentevu k ego shestidesyatiletiyu, Tr. MIAN SSSR, 60, 1961, 195–210 | Zbl

[10] Yu. N. Shakhov, “O priblizhennom reshenii uravnenii Volterra II roda metodom iteratsii”, Dokl. AN SSSR, 136:6 (1961), 1302–1305 | Zbl

[11] M. Z. Geçmen, E. Çelik, “Numerical solution of Volterra-Fredholm integral equations with Hosoya polynomials”, Math Meth Appl Sci., 44 (2021), 11166–11173 | DOI | MR

[12] W. Shatanawi, N. Mlaiki, D. Rizk, et al., “Fredholm-type integral equation in controlled metric-like spaces”, Adv Differ Equ., 358 (2021) | MR

[13] S. C. Buranay, M. A. Özarslan, S. S. Falahhesar, “Numerical Solution of the Fredholm and Volterra Integral Equations by Using Modified Bernstein-Kantorovich Operators”, Mathematics, 9 (2021), 1193 | DOI

[14] V. A. Bykovskii, “Diskretnoe preobrazovanie Fure i tsiklicheskaya svertka na tselochislennykh reshetkakh”, Dokl. AN SSSR, 302:1 (1988), 11–13

[15] Y. Kolomoitsev, J. Prestin, “Approximation properties of periodic multivariate quasi-interpolation operators”, Journal of Approximation Theory, 270 (2021), 105631 | DOI | MR | Zbl

[16] S. C. Buranay, M. A. Özarslan, S. S. Falahhesar, “Numerical Solution of the Fredholm and Volterra Integral Equations by Using Modified Bernstein-Kantorovich Operators”, Mathematics, 9 (2021), 1193 | DOI

[17] N. N. Dobrovolskii, “Otklonenie dvumernykh setok Smolyaka”, Chebyshevskii sbornik, 8:1 (2007), 110–152 | MR | Zbl

[18] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, vtoroe izdanie, MTsNMO, M., 2004, 288 pp.

[19] N. M. Dobrovolskii, A. R. Esayan, O. V. Andreeva, N. V. Zaitseva, “Mnogomernaya teoretiko-chislovaya Fure interpolyatsiya”, Chebyshevskii sbornik, 5:1 (2004), 122–143 | MR | Zbl