Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_3_a21, author = {N. N. Dobrovol'skii and S. A. Skobel'tsyn and L. A. Tolokonnikov and N. V. Larin}, title = {About application of number-theoretic grids in problems of acoustics}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {368--382}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a21/} }
TY - JOUR AU - N. N. Dobrovol'skii AU - S. A. Skobel'tsyn AU - L. A. Tolokonnikov AU - N. V. Larin TI - About application of number-theoretic grids in problems of acoustics JO - Čebyševskij sbornik PY - 2021 SP - 368 EP - 382 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a21/ LA - ru ID - CHEB_2021_22_3_a21 ER -
%0 Journal Article %A N. N. Dobrovol'skii %A S. A. Skobel'tsyn %A L. A. Tolokonnikov %A N. V. Larin %T About application of number-theoretic grids in problems of acoustics %J Čebyševskij sbornik %D 2021 %P 368-382 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a21/ %G ru %F CHEB_2021_22_3_a21
N. N. Dobrovol'skii; S. A. Skobel'tsyn; L. A. Tolokonnikov; N. V. Larin. About application of number-theoretic grids in problems of acoustics. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 368-382. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a21/
[1] S. M. Rao, “An iterative method to solve acoustic scattering problems using a boundary integral equation”, J. Acoust. Soc. Am., 130:4 (2011), 1792–1798 | DOI
[2] J. A. Fawcett, “Scattering from a finite cylinder near an interface”, J. Acoust. Soc. Am., 136:2 (2014), 485–493 | DOI
[3] A. M. A. Alsnayyan, J. Li, S. Hughey, A. Diaz, B. Shanker, “Efficient isogeometric boundary element method for analysis of acoustic scattering from rigid bodies”, J. Acoust. Soc. Am., 147:5 (2020), 3275–3284 | DOI
[4] E. L. Shenderov, Izluchenie i rasseyanie zvuka, Sudostroenie, L., 1989, 304 pp.
[5] E. L. Shenderov, Volnovye zadachi gidroakustiki, Sudostroenie, L., 1972, 352 pp.
[6] N. N. Kalitkin, Chislennye metody, Nauka, M., 1978, 512 pp.
[7] E. A. Ivanov, Difraktsiya elektromagnitnykh voln na dvukh telakh, Nauka i tekhnika, Minsk, 1968, 584 pp.
[8] I. Yu. Rebrova, V. N. Chubarikov, N. N. Dobrovolskii, M. N. Dobrovolskii, N. M. Dobrovolskii, “O klassicheskikh teoretiko-chislovykh setkakh”, Chebyshevckii sbornik, 19:4 (2018), 118–176 | MR | Zbl
[9] N. M. Korobov, “Primenenie teoretiko-chislovykh setok v integralnykh uravneniyakh i interpolyatsionnykh formulakh”, Sbornik statei. Posvyaschaetsya akademiku Mikhailu Alekseevichu Lavrentevu k ego shestidesyatiletiyu, Tr. MIAN SSSR, 60, 1961, 195–210 | Zbl
[10] Yu. N. Shakhov, “O priblizhennom reshenii uravnenii Volterra II roda metodom iteratsii”, Dokl. AN SSSR, 136:6 (1961), 1302–1305 | Zbl
[11] M. Z. Geçmen, E. Çelik, “Numerical solution of Volterra-Fredholm integral equations with Hosoya polynomials”, Math Meth Appl Sci., 44 (2021), 11166–11173 | DOI | MR
[12] W. Shatanawi, N. Mlaiki, D. Rizk, et al., “Fredholm-type integral equation in controlled metric-like spaces”, Adv Differ Equ., 358 (2021) | MR
[13] S. C. Buranay, M. A. Özarslan, S. S. Falahhesar, “Numerical Solution of the Fredholm and Volterra Integral Equations by Using Modified Bernstein-Kantorovich Operators”, Mathematics, 9 (2021), 1193 | DOI
[14] V. A. Bykovskii, “Diskretnoe preobrazovanie Fure i tsiklicheskaya svertka na tselochislennykh reshetkakh”, Dokl. AN SSSR, 302:1 (1988), 11–13
[15] Y. Kolomoitsev, J. Prestin, “Approximation properties of periodic multivariate quasi-interpolation operators”, Journal of Approximation Theory, 270 (2021), 105631 | DOI | MR | Zbl
[16] S. C. Buranay, M. A. Özarslan, S. S. Falahhesar, “Numerical Solution of the Fredholm and Volterra Integral Equations by Using Modified Bernstein-Kantorovich Operators”, Mathematics, 9 (2021), 1193 | DOI
[17] N. N. Dobrovolskii, “Otklonenie dvumernykh setok Smolyaka”, Chebyshevskii sbornik, 8:1 (2007), 110–152 | MR | Zbl
[18] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, vtoroe izdanie, MTsNMO, M., 2004, 288 pp.
[19] N. M. Dobrovolskii, A. R. Esayan, O. V. Andreeva, N. V. Zaitseva, “Mnogomernaya teoretiko-chislovaya Fure interpolyatsiya”, Chebyshevskii sbornik, 5:1 (2004), 122–143 | MR | Zbl