Estimates the Bergman kernel for classical domains \'{E}.~Cartan's
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 20-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this work is to find optimal estimates for the Bergman kernels for the classical domains ${{\Re }_{I}}\left( m,k \right),{{\Re }_{II}}\left( m \right),{{\Re }_{III}}\left( m \right)$ and ${{\Re }_{IV}}\left( n \right)$ through the Bergman kernels of balls in the spaces ${{\mathbb{C}}^{mk}},{{\mathbb{C}}^{\frac{m\left( m+1 \right)}{2}}},{{\mathbb{C}}^{\frac{m\left( m-1 \right)}{2}}}$ and ${{\mathbb{C}}^{n}}$, respectively. For this, we use the statements of the Summer-Mehring theorem on the extension of the Bergman kernel and some properties of the Bergman kernel.
Keywords: classical domains, Bergman's kernel, homogeneous domain, symmetric domain, orthonormal system.
@article{CHEB_2021_22_3_a2,
     author = {J. Sh. Abdullayev},
     title = {Estimates the {Bergman} kernel for classical domains {\'{E}.~Cartan's}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {20--31},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a2/}
}
TY  - JOUR
AU  - J. Sh. Abdullayev
TI  - Estimates the Bergman kernel for classical domains \'{E}.~Cartan's
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 20
EP  - 31
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a2/
LA  - en
ID  - CHEB_2021_22_3_a2
ER  - 
%0 Journal Article
%A J. Sh. Abdullayev
%T Estimates the Bergman kernel for classical domains \'{E}.~Cartan's
%J Čebyševskij sbornik
%D 2021
%P 20-31
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a2/
%G en
%F CHEB_2021_22_3_a2
J. Sh. Abdullayev. Estimates the Bergman kernel for classical domains \'{E}.~Cartan's. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 20-31. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a2/

[1] Cartan É., “Sur les domaines bornes homogenes de l 'espace de $n$ variables complexes”, Abh. Math. Sem. Univ. Hamburg, 11 (1935), 116–162 | DOI | MR

[2] Zigel K., Avtomorfnye funktsii neskolkikh kompleksnykh peremennykh, IL, M., 1954, 168 pp.

[3] Khua L. K., Garmonicheskii analiz funktsii mnogikh kompleksnykh peremennykh v klassicheskikh oblastyakh, IL, M., 1959, 163 pp. | MR

[4] Pyatetskii-Shapiro I. I., Geometriya klassicheskikh oblastei i teoriya avtomorfnykh funktsii, Nauka, M., 1961, 192 pp. | MR

[5] Henkin G.M., “The method of integral representations in complex analysis”, Complex analysis-several variables-1, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 7, VINITI, M., 1985, 23–124

[6] Xiao Ming, “Regularity of mappings into classical domains”, Mathematische Annalen, 378:3–4 (2020), 1271–1309 | DOI | MR | Zbl

[7] Xiao M., “Bergman-Harmonic Functions on Classical Domains”, International Mathematics Research Notices, 00 (2019), 1–36 | MR

[8] Fuks B. A., Special Chapters in the Theory of Analytic Functions of Several Complex Variables, Fizmatgiz, 1963 | MR

[9] Aizenberg L. A., Formuly Karlemana v kompleksnom analize, Nauka, Novosibirsk, 1990, 248 pp. | MR

[10] Aizenberg L. A., Yuzhakov A. P., Integralnye predstavleniya i vychety v mnogomernom kompleksnom analize, Nauka, Novosibirsk, 1979, 366 pp. | MR

[11] Khudaiberganov G., Khidirov B. B., Rakhmonov U. S., “Avtomorfizmy matrichnykh sharov”, Vestnik NUUz, 2010, no. 3, 205–210

[12] Rudin W., Function Theory in the Unit Ball of $\mathbb{C}^{n}$, Springer-Verlag, New York–Berlin–Heidelberg, 1980, 436 pp. | MR

[13] Krantz S. G., Harmonic and complex analysis in several variables, Springer Monographs in Mathematics, Gewerbestrasse, 11, Cham, Switzerland, 2017, 429 pp. | DOI | MR

[14] Sergeev A. G., On matrix and Reinhardt domains, Inst. Mittag-Leffler, Stockholm, 1988, 7 pp.

[15] Khudaiberganov G., Kytmanov A. M., Shaimkulov B. A., Analiz v matrichnykh oblastyakh, Sibirskii federalnyi un-t, Krasnoyarsk, 2017, 296 pp.

[16] Khudayberganov G., Rakhmonov U. S., “Carleman Formula for Matrix Ball of the Third Type”, Algebra, Complex Analysis, and Pluripotential Theory, USUZCAMP 2017, Springer Proceedings in Mathematics Statistics, 264, Springer, Cham, 2017, 101–108 | DOI | MR

[17] Khudayberganov G., Rakhmonov U., “The Bergman and Cauchy-Szegö kernels for matrix ball of the second type”, J. Sib. Fed. Univ. Math. Phys., 7:3 (2014), 305–310 | MR | Zbl

[18] Myslivets S. G., “Construction of Szegö and Poisson kernels in convex domains”, J. Sib. Fed. Univ. Math. Phys., 11:6 (2018), 792–795 | DOI | MR | Zbl

[19] Khudayberganov G., Abdullayev J. Sh., “Relationship between the Bergman and Cauchy-Szegö kernels in the domains ${{\tau }^{+}}\left( n-1 \right)$ and $\Re _{IV}^{n}$”, J. Sib. Fed. Univ. Math. Phys., 13:5 (2020), 559–567 | DOI | MR | Zbl

[20] Myslivets S. G., “O yadrakh Sege i Puassona v vypuklykh oblastyakh v ${{\mathbb{C}}^{n}}$”, Izvestiya vuzov. Matematika, 2019, no. 1, 42–48 | Zbl

[21] Rakhmonov U. S., Abdullayev J. Sh., “On volumes of matrix ball of third type and generalized Lie balls”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Kompyuternye Nauki, 29:4 (2019), 548–557 | DOI | MR | Zbl

[22] Khudayberganov G., Khalknazarov A.M., Abdullayev J.Sh., “Laplace and Hua Luogeng operators”, Russian Mathematics (Izv. Vyssh. Uchebn. Zaved. Mat), 64:3 (2020), 66–71 | MR | Zbl

[23] Shabat B. V., Vvedenie v kompleksnyi analiz, v. 2, 3-e izd., Nauka, M., 1985, 464 pp. | MR

[24] Bremermann H.-J., Die charakterisierung von regularitätsgebieten durch pseudokonvexe runktionen, Schriftrenreihe Math. Inst. Munster, No 5, 1951 | MR

[25] Hua Luogeng, “On the theory of automorphic functions of a matrix variable I-geometrical basis”, American Journal of Mathematics, 66:3 (1944), 470–488 | DOI | MR | Zbl