The integral formula in problems of the stability of inhomogeneous rods
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 345-352.

Voir la notice de l'article provenant de la source Math-Net.Ru

A heterogeneous in length bar with a variable cross-section is considered. The bar is compressed by a variable longitudinal force which is distributed along its axis. The article describes the case of stability loss of the straight form of equilibrium of a bar, when both, linear and curved forms are possible. The critical combination of rigidity and longitudinal force is the result of an integral representation for the solution of the given stability equation with variable coefficients by the aid of the solution of similar equation but with constant coefficients. The integral representation includes the Green function of the given equation which can be obtained by the method of perturbations. The example of compiling of the equation for critical loading is reduced.
Keywords: Elasticity, stability, inhomogeneous rod, average method, the integral formula.
@article{CHEB_2021_22_3_a19,
     author = {V. I. Gorbachev and A. A. Ruban},
     title = {The integral formula in problems of the stability of inhomogeneous rods},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {345--352},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a19/}
}
TY  - JOUR
AU  - V. I. Gorbachev
AU  - A. A. Ruban
TI  - The integral formula in problems of the stability of inhomogeneous rods
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 345
EP  - 352
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a19/
LA  - ru
ID  - CHEB_2021_22_3_a19
ER  - 
%0 Journal Article
%A V. I. Gorbachev
%A A. A. Ruban
%T The integral formula in problems of the stability of inhomogeneous rods
%J Čebyševskij sbornik
%D 2021
%P 345-352
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a19/
%G ru
%F CHEB_2021_22_3_a19
V. I. Gorbachev; A. A. Ruban. The integral formula in problems of the stability of inhomogeneous rods. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 345-352. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a19/

[1] Feodos'ev V. I., Soprotivlenie materialov, Nauka, M., 1979, 560 pp.

[2] Timoshenko S. P., Soprotivlenie materialov, v. 2, M., 1956, 470 pp. | MR

[3] Dinnik A. N., Ustojchivost' uprugih sistem, ONTI, M., 1935, 183 pp.

[4] Mikeladze SH. E., Novye metody integrirovaniya differencial'nyh uravnenij, GITTL, M.–L., 1951, 291 pp. | MR

[5] Kolatc L., Zadachi na sobstvennye znacheniya, Nauka, M., 1968, 503 pp.

[6] Timoshenko S. P., Soprotivlenie materialov, v. 2, M., 1956, 470 pp. | MR

[7] Bahvalov N. S., Panasenko G. P., Osrednennie processov v periodicheskih sredah, Nauka, M., 1984, 352 pp. | MR

[8] Pobedrya B. E., Mekhanika kompozicionnyh materialov, Izd-vo MGU, M., 1984, 336 pp.

[9] Gorbachev V. I., Moskalenko O. B., Gorbachev V. I., Moskalenko O. B., “Stability of bars with variable rigidity”, Moscow University Mechanics Bulletin, 65:6 (2010), 147–150 | DOI | MR

[10] Gorbachev V. I., Moskalenko O. B., “Stability of a straight bar of variable rigidity”, Mechanics of Solids, 46:4 (2011), 645–655 | DOI

[11] Gorbachev V. I., “Metod tenzorov Grina dlya resheniya kraevyh zadach teorii uprugosti neodnorodnyh sred”, Vychislitel'naya mekhanika deformiruemogo tverdogo tela, 1991, no. 2, 61–76

[12] Gorbachev V. I., Moskalenko O. B., “Stability of bars with variable rigidity compressed by a distributed force”, Moscow University Mechanics Bulletin, 67:1 (2012), 5–10 | DOI | MR | Zbl

[13] Kech V., Teodoresku P., Vvedenie v teoriyu obobshchennyh funkcij s prilozheniyami v tekhnike, Mir, M., 1978, 518 pp. | MR