Some number-theoretic methods for solving partial derivatives
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 256-297.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a new method is constructed for solving partial differential equations using a sequence of nested generalized parallelepiped grids. This method is a generalization and development of the V. S. Ryaben'kii and N. M. Korobov method for the approximate solution of partial differential equations for the case of using arbitrary generalized parallelepiped grids for integer lattices. The error of this method was also found. In the case of using an infinite sequence of nested generalized parallelepiped grids, a fairly fast convergence will take place. In addition, a variant of constructing optimal grids in the two-dimensional case is proposed. It is based on the integer approximation of algebraic lattices. In the two-dimensional case, the grids constructed in this way will always give generalized parallelepiped grids. Moreover, there are simple ways to assess the quality of the resulting meshes. One such method, based on the use of a hyperbolic parameter, is considered in this paper.
Keywords: finite fields, squares, sums.
@article{CHEB_2021_22_3_a16,
     author = {A. V. Rodionov},
     title = {Some number-theoretic methods for solving partial derivatives},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {256--297},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a16/}
}
TY  - JOUR
AU  - A. V. Rodionov
TI  - Some number-theoretic methods for solving partial derivatives
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 256
EP  - 297
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a16/
LA  - ru
ID  - CHEB_2021_22_3_a16
ER  - 
%0 Journal Article
%A A. V. Rodionov
%T Some number-theoretic methods for solving partial derivatives
%J Čebyševskij sbornik
%D 2021
%P 256-297
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a16/
%G ru
%F CHEB_2021_22_3_a16
A. V. Rodionov. Some number-theoretic methods for solving partial derivatives. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 256-297. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a16/

[1] Sh. K. Abikenova, A. Utesov, N. T. Temirgaliev, “O diskretizatsii reshenii volnovogo uravneniya s nachalnymi usloviyami iz obobschennykh klassov Soboleva”, Matem. zametki, 91:3 (2012), 459–463 | MR | Zbl

[2] E. A. Bailov, N. T. Temirgaliev, “O diskretizatsii reshenii uravneniya Puassona”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1594–1604 | MR

[3] V. A. Bykovskii, S. V. Gassan, “O parametre optimalnosti parallelepipedalnykh setok Korobova dlya kubaturnykh formul”, Zh. vychisl. matem. i matem. fiz., 51:8 (2011), 1363–1369 | MR | Zbl

[4] I. M. Vinogradov, Osnovy teorii chisel, Nauka, M., 1981 | MR

[5] A. S. Gertsog, “Parametrizatsiya chetyrekhmernoi setki bikvadratichnogo polya Dirikhle”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika, 23(188):5 (2011), 41–53

[6] S. S. Demidov, E. A. Morozova, V. N. Chubarikov, I. Yu. Rebrova, I. N. Balaba, N. N. Dobrovolskii, N. M. Dobrovolskii, L. P. Dobrovolskaya, A. V. Rodionov, O. A. Pikhtilkova, “Teoretiko-chislovoi metod v priblizhennom analize”, Chebyshevskii sbornik, 18:4 (2017), 6–85 | MR | Zbl

[7] L. P. Dobrovolskaya, M. N. Dobrovolskii, N. M. Dobrovolskii, N. N. Dobrovolskii, Mnogomernye teoretiko-chislovye setki i reshetki i algoritmy poiska optimalnykh koeffitsientov, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2012, 283 pp.

[8] L. P. Dobrovolskaya, M. N. Dobrovolskii, N. M. Dobrovolskii, N. N. Dobrovolskii, “Giperbolicheskie dzeta-funktsii setok i reshetok i vychislenie optimalnykh koeffitsientov”, Chebyshevskii sbornik, 2012

[9] N. N. Dobrovolskii, N. M. Dobrovolskii, I. Yu. Rebrova, A. V. Rodionov, “Monoidy naturalnykh chisel v teoretiko-chislovom metode v priblizhennom analize”, Chebyshevckii sbornik, 20:1 (2019), 164–178

[10] N. M. Dobrovolskii, “O sovremennykh problemakh teorii giperbolicheskoi dzeta-funktsii reshetok”, Chebyshevskii sbornik, 16:1 (2015), 176–190 | MR | Zbl

[11] Dobrovolskaya L. P., Dobrovolskii N. M., Simonov A. S., “O pogreshnosti priblizhennogo integrirovaniya po modifitsirovannym setkam”, Chebyshevskii sbornik, 9:1(25) (2008), 185–223 | MR | Zbl

[12] Dobrovolskii M. N., Dobrovolskii N. M., Kiseleva O. V., “O proizvedenii obobschennykh parallelepipedalnykh setok tselochislennykh reshetok”, Chebyshevskii sbornik, 3:2(4) (2002), 43–59 | MR | Zbl

[13] Dobrovolskii M. N., “Ob optimalnykh koeffitsientakh kombinirovannykh setok”, Chebyshevskii sbornik, 5:1(9) (2004), 95–121 | MR | Zbl

[14] Dobrovolskii M. N., “Otsenki summ po giperbolicheskomu krestu”, Izv. TulGU. Ser. Matematika. Mekhanika. Informatika, 9:1 (2003), 82–90 | MR

[15] Dobrovolskii N. M., Giperbolicheskaya dzeta funktsiya reshetok, Dep. v VINITI 24.08.84, No 6090-84

[16] Dobrovolskii N. M., Manokhin E. V., “Banakhovy prostranstva periodicheskikh funktsii”, Izv. TulGU. Ser. Mekhanika. Matematika. Informatika, 4:3 (1998), 56–67 | MR

[17] N. M. Dobrovolskii, O kvadraturnykh formulakh na klassakh $E^\alpha_s(c)$ i $H^\alpha_s(c)$, Dep. v VINITI 24.08.84, No 6091-84

[18] Dobrovolskii N. M., Esayan A. R., Rebrova I. Yu., “Ob odnom rekursivnom algoritme dlya reshetok”, Teoriya priblizhenii i garmonicheskii analiz, Tez. dokl. Mezhdunar. konf. (Tula, 1998), 90

[19] N. M. Dobrovolskii, Teoretiko–chislovye setki i ikh prilozheniya, Dis. ... kand. fiz.–mat. nauk, Tula, 1984 | Zbl

[20] N. M. Dobrovolskii, Teoretiko–chislovye setki i ikh prilozheniya, Avtoref. dis. ... kand. fiz.–mat. nauk, M., 1985

[21] N. M. Dobrovolskii, “Teoretiko–chislovye setki i ikh prilozheniya”, Teoriya chisel i ee prilozheniya, Tez. dokl. Vsesoyuz. konf. (Tbilisi, 1985), 67–70

[22] N. M. Dobrovolskii, Mnogomernye teoretiko – chislovye setki i reshetki i ikh prilozheniya, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2005

[23] Dobrovolskii N. M., Vankova V. S., “Chislennyi eksperiment po primeneniyu parallelepipedalnykh setok”, Algoritmicheskie problemy teorii grupp i podgrupp, Tula, 1990, 153–155 | Zbl

[24] Dobrovolskii N. M., Esayan A. R., Andreeva O. V., Zaitseva N. V., “Mnogomernaya teoretiko-chislovaya Fure interpolyatsiya”, Chebyshevskii sbornik, 5:1(9) (2004), 122–143 | MR | Zbl

[25] Korobov N. M., “Priblizhennoe vychislenie kratnykh integralov s pomoschyu metodov teorii chisel”, DAN SSSR, 1957, no. 6, 1062–1065 | Zbl

[26] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963

[27] Korobov N. M., “O priblizhennom vychislenii kratnykh integralov”, DAN SSSR, 124:6 (1959), 1207–1210 | Zbl

[28] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, vtoroe izdanie, MTsNMO, M., 2004

[29] I. Yu. Rebrova, V. N. Chubarikov, N. N. Dobrovolskii, M. N. Dobrovolskii, N. M. Dobrovolskii, “O klassicheskikh teoretiko-chislovykh setkakh”, Chebyshevckii sbornik, 19:4 (2018), 118–176 | MR | Zbl

[30] “Reshenie differentsialnykh uravnenii v chastnykh proizvodnykh metodom V. S. Ryabenkogo”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:4(2) (2013), 120–124 | Zbl

[31] A. V. Rodionov, “O metode N. M. Korobova priblizhennogo resheniya zadachi Dirikhle”, Chebyshevskii sbornik, 15:3 (2014), 48–85 | MR | Zbl

[32] A. V. Rodionov, “Giperbolicheskii parametr priblizheniya kvadratichnykh algebraicheskikh reshetok tselochislennymi”, Chebyshevckii sbornik, 21:3 (2020), 241–249 | MR | Zbl

[33] Ryabenkii V. S., “Ob odnom sposobe polucheniya raznostnykh skhem i ob ispolzovanii teoretiko-chislovykh setok dlya resheniya zadachi Koshi metodom konechnykh raznostei”, Tr. matem. in-ta im. V. A. Steklova, 60, 1961, 232–237

[34] Frolov K. K., “Otsenki sverkhu pogreshnosti kvadraturnykh formul na klassakh funktsii”, DAN SSSR, 231:4 (1976), 818–821 | MR | Zbl

[35] Frolov K. K., Kvadraturnye formuly na klassakh funktsii, Dis. ... kand. fiz.-mat. nauk, VTs AN SSSR, M., 1979 | MR

[36] Sharygin I. F., “Otsenki snizu pogreshnosti kvadraturnykh formul na klassakh funktsii”, Zhurn. vychisl. mat. i mat. fiziki, 7:4 (1963), 784–802

[37] Buchholz A. et al., “Quasi-Monte Carlo Variational Inference”, ICML, 2018

[38] J. Chen, R. Du, P. Li, L. Lyu, “Quasi-monte carlo sampling for solving partial differential equations by deep neural networks”, Numerical Mathematics, 14:2 (2021), 377–404 | MR | Zbl

[39] Jingrun Chen, Rui Du, Keke Wu, “A Comparison Study of Deep Galerkin Method and Deep Ritz Method for Elliptic Problems with Different Boundary Conditions”, Communications in Mathematical Research, 36:3 (2020), 354–376 | DOI | MR | Zbl

[40] Jiao Yuling et al., Error Analysis of Deep Ritz Methods for Elliptic Equations, 2021, arXiv: 2107.14478

[41] Y. Liao, P. Ming, “Deep nitsche method: Deep ritz method with essential boundary conditions”, Communications in Computational Physics, 29:5 (2021), 1365–1384 | DOI | MR | Zbl

[42] Z. Wang, Z. Zhang, “A mesh-free method for interface problems using the deep learning approach”, Journal of Computational Physics, 400 (2020), 108963 | DOI | MR | Zbl

[43] V. Temlyakov, Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge University Press, Cambridge, 2018, 550 pp. | MR | Zbl

[44] D. Dũng, V. Temlyakov, T. Ulrich, Hyperbolic cross approximation, Advanced courses in Mathematics-CRM Barcelona, Birkäuser Basel, Basel, 2018, 218 pp. | MR | Zbl

[45] V.N. Temlyakov, “Universal discretization”, Journal of Complexity, 47 (2018), 97–109 | DOI | MR | Zbl

[46] V.N. Temlyakov, M. Ullrich, “On the fixed volume discrepancy of the Fibonacci sets in the integral norms”, Journal of Complexity, 61 (2020), 101472 | DOI | MR | Zbl

[47] J. Sirignano, K. Spiliopoulos, “DGM: A deep learning algorithm for solving partial differential equations”, Journal of Computational Physics, 375 (2017), 1339–1364 | DOI | MR

[48] E. Weinan, Bing Yu, “The Deep Ritz method: a numerical algorithm based on deep learning for solving variational problems”, Communications in Mathematics and Statistics, 6 (2018), 1–12 | MR | Zbl