Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_3_a16, author = {A. V. Rodionov}, title = {Some number-theoretic methods for solving partial derivatives}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {256--297}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a16/} }
A. V. Rodionov. Some number-theoretic methods for solving partial derivatives. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 256-297. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a16/
[1] Sh. K. Abikenova, A. Utesov, N. T. Temirgaliev, “O diskretizatsii reshenii volnovogo uravneniya s nachalnymi usloviyami iz obobschennykh klassov Soboleva”, Matem. zametki, 91:3 (2012), 459–463 | MR | Zbl
[2] E. A. Bailov, N. T. Temirgaliev, “O diskretizatsii reshenii uravneniya Puassona”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1594–1604 | MR
[3] V. A. Bykovskii, S. V. Gassan, “O parametre optimalnosti parallelepipedalnykh setok Korobova dlya kubaturnykh formul”, Zh. vychisl. matem. i matem. fiz., 51:8 (2011), 1363–1369 | MR | Zbl
[4] I. M. Vinogradov, Osnovy teorii chisel, Nauka, M., 1981 | MR
[5] A. S. Gertsog, “Parametrizatsiya chetyrekhmernoi setki bikvadratichnogo polya Dirikhle”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika, 23(188):5 (2011), 41–53
[6] S. S. Demidov, E. A. Morozova, V. N. Chubarikov, I. Yu. Rebrova, I. N. Balaba, N. N. Dobrovolskii, N. M. Dobrovolskii, L. P. Dobrovolskaya, A. V. Rodionov, O. A. Pikhtilkova, “Teoretiko-chislovoi metod v priblizhennom analize”, Chebyshevskii sbornik, 18:4 (2017), 6–85 | MR | Zbl
[7] L. P. Dobrovolskaya, M. N. Dobrovolskii, N. M. Dobrovolskii, N. N. Dobrovolskii, Mnogomernye teoretiko-chislovye setki i reshetki i algoritmy poiska optimalnykh koeffitsientov, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2012, 283 pp.
[8] L. P. Dobrovolskaya, M. N. Dobrovolskii, N. M. Dobrovolskii, N. N. Dobrovolskii, “Giperbolicheskie dzeta-funktsii setok i reshetok i vychislenie optimalnykh koeffitsientov”, Chebyshevskii sbornik, 2012
[9] N. N. Dobrovolskii, N. M. Dobrovolskii, I. Yu. Rebrova, A. V. Rodionov, “Monoidy naturalnykh chisel v teoretiko-chislovom metode v priblizhennom analize”, Chebyshevckii sbornik, 20:1 (2019), 164–178
[10] N. M. Dobrovolskii, “O sovremennykh problemakh teorii giperbolicheskoi dzeta-funktsii reshetok”, Chebyshevskii sbornik, 16:1 (2015), 176–190 | MR | Zbl
[11] Dobrovolskaya L. P., Dobrovolskii N. M., Simonov A. S., “O pogreshnosti priblizhennogo integrirovaniya po modifitsirovannym setkam”, Chebyshevskii sbornik, 9:1(25) (2008), 185–223 | MR | Zbl
[12] Dobrovolskii M. N., Dobrovolskii N. M., Kiseleva O. V., “O proizvedenii obobschennykh parallelepipedalnykh setok tselochislennykh reshetok”, Chebyshevskii sbornik, 3:2(4) (2002), 43–59 | MR | Zbl
[13] Dobrovolskii M. N., “Ob optimalnykh koeffitsientakh kombinirovannykh setok”, Chebyshevskii sbornik, 5:1(9) (2004), 95–121 | MR | Zbl
[14] Dobrovolskii M. N., “Otsenki summ po giperbolicheskomu krestu”, Izv. TulGU. Ser. Matematika. Mekhanika. Informatika, 9:1 (2003), 82–90 | MR
[15] Dobrovolskii N. M., Giperbolicheskaya dzeta funktsiya reshetok, Dep. v VINITI 24.08.84, No 6090-84
[16] Dobrovolskii N. M., Manokhin E. V., “Banakhovy prostranstva periodicheskikh funktsii”, Izv. TulGU. Ser. Mekhanika. Matematika. Informatika, 4:3 (1998), 56–67 | MR
[17] N. M. Dobrovolskii, O kvadraturnykh formulakh na klassakh $E^\alpha_s(c)$ i $H^\alpha_s(c)$, Dep. v VINITI 24.08.84, No 6091-84
[18] Dobrovolskii N. M., Esayan A. R., Rebrova I. Yu., “Ob odnom rekursivnom algoritme dlya reshetok”, Teoriya priblizhenii i garmonicheskii analiz, Tez. dokl. Mezhdunar. konf. (Tula, 1998), 90
[19] N. M. Dobrovolskii, Teoretiko–chislovye setki i ikh prilozheniya, Dis. ... kand. fiz.–mat. nauk, Tula, 1984 | Zbl
[20] N. M. Dobrovolskii, Teoretiko–chislovye setki i ikh prilozheniya, Avtoref. dis. ... kand. fiz.–mat. nauk, M., 1985
[21] N. M. Dobrovolskii, “Teoretiko–chislovye setki i ikh prilozheniya”, Teoriya chisel i ee prilozheniya, Tez. dokl. Vsesoyuz. konf. (Tbilisi, 1985), 67–70
[22] N. M. Dobrovolskii, Mnogomernye teoretiko – chislovye setki i reshetki i ikh prilozheniya, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2005
[23] Dobrovolskii N. M., Vankova V. S., “Chislennyi eksperiment po primeneniyu parallelepipedalnykh setok”, Algoritmicheskie problemy teorii grupp i podgrupp, Tula, 1990, 153–155 | Zbl
[24] Dobrovolskii N. M., Esayan A. R., Andreeva O. V., Zaitseva N. V., “Mnogomernaya teoretiko-chislovaya Fure interpolyatsiya”, Chebyshevskii sbornik, 5:1(9) (2004), 122–143 | MR | Zbl
[25] Korobov N. M., “Priblizhennoe vychislenie kratnykh integralov s pomoschyu metodov teorii chisel”, DAN SSSR, 1957, no. 6, 1062–1065 | Zbl
[26] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963
[27] Korobov N. M., “O priblizhennom vychislenii kratnykh integralov”, DAN SSSR, 124:6 (1959), 1207–1210 | Zbl
[28] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, vtoroe izdanie, MTsNMO, M., 2004
[29] I. Yu. Rebrova, V. N. Chubarikov, N. N. Dobrovolskii, M. N. Dobrovolskii, N. M. Dobrovolskii, “O klassicheskikh teoretiko-chislovykh setkakh”, Chebyshevckii sbornik, 19:4 (2018), 118–176 | MR | Zbl
[30] “Reshenie differentsialnykh uravnenii v chastnykh proizvodnykh metodom V. S. Ryabenkogo”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:4(2) (2013), 120–124 | Zbl
[31] A. V. Rodionov, “O metode N. M. Korobova priblizhennogo resheniya zadachi Dirikhle”, Chebyshevskii sbornik, 15:3 (2014), 48–85 | MR | Zbl
[32] A. V. Rodionov, “Giperbolicheskii parametr priblizheniya kvadratichnykh algebraicheskikh reshetok tselochislennymi”, Chebyshevckii sbornik, 21:3 (2020), 241–249 | MR | Zbl
[33] Ryabenkii V. S., “Ob odnom sposobe polucheniya raznostnykh skhem i ob ispolzovanii teoretiko-chislovykh setok dlya resheniya zadachi Koshi metodom konechnykh raznostei”, Tr. matem. in-ta im. V. A. Steklova, 60, 1961, 232–237
[34] Frolov K. K., “Otsenki sverkhu pogreshnosti kvadraturnykh formul na klassakh funktsii”, DAN SSSR, 231:4 (1976), 818–821 | MR | Zbl
[35] Frolov K. K., Kvadraturnye formuly na klassakh funktsii, Dis. ... kand. fiz.-mat. nauk, VTs AN SSSR, M., 1979 | MR
[36] Sharygin I. F., “Otsenki snizu pogreshnosti kvadraturnykh formul na klassakh funktsii”, Zhurn. vychisl. mat. i mat. fiziki, 7:4 (1963), 784–802
[37] Buchholz A. et al., “Quasi-Monte Carlo Variational Inference”, ICML, 2018
[38] J. Chen, R. Du, P. Li, L. Lyu, “Quasi-monte carlo sampling for solving partial differential equations by deep neural networks”, Numerical Mathematics, 14:2 (2021), 377–404 | MR | Zbl
[39] Jingrun Chen, Rui Du, Keke Wu, “A Comparison Study of Deep Galerkin Method and Deep Ritz Method for Elliptic Problems with Different Boundary Conditions”, Communications in Mathematical Research, 36:3 (2020), 354–376 | DOI | MR | Zbl
[40] Jiao Yuling et al., Error Analysis of Deep Ritz Methods for Elliptic Equations, 2021, arXiv: 2107.14478
[41] Y. Liao, P. Ming, “Deep nitsche method: Deep ritz method with essential boundary conditions”, Communications in Computational Physics, 29:5 (2021), 1365–1384 | DOI | MR | Zbl
[42] Z. Wang, Z. Zhang, “A mesh-free method for interface problems using the deep learning approach”, Journal of Computational Physics, 400 (2020), 108963 | DOI | MR | Zbl
[43] V. Temlyakov, Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge University Press, Cambridge, 2018, 550 pp. | MR | Zbl
[44] D. Dũng, V. Temlyakov, T. Ulrich, Hyperbolic cross approximation, Advanced courses in Mathematics-CRM Barcelona, Birkäuser Basel, Basel, 2018, 218 pp. | MR | Zbl
[45] V.N. Temlyakov, “Universal discretization”, Journal of Complexity, 47 (2018), 97–109 | DOI | MR | Zbl
[46] V.N. Temlyakov, M. Ullrich, “On the fixed volume discrepancy of the Fibonacci sets in the integral norms”, Journal of Complexity, 61 (2020), 101472 | DOI | MR | Zbl
[47] J. Sirignano, K. Spiliopoulos, “DGM: A deep learning algorithm for solving partial differential equations”, Journal of Computational Physics, 375 (2017), 1339–1364 | DOI | MR
[48] E. Weinan, Bing Yu, “The Deep Ritz method: a numerical algorithm based on deep learning for solving variational problems”, Communications in Mathematics and Statistics, 6 (2018), 1–12 | MR | Zbl