On some additive problems of Goldbach's type
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 179-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we find an asymptotic formula with power-saving remainder term for the number of solutions of one non-linear ternary problem with primes. The proof is based on the "precise formula" for Chebyshev's function involving the zeros of Riemann zeta function. In fact, a ternary problem "at each zero" is solved. I. M. Vinogradov's solution of the ternary Goldbach problem (1937, see [1], [2]) opened the way of solving a wide class of problems of the above type. In 1938, he found a power-saving estimate (with respect to the length of the summation interval) for the mean value of the modulus of the exponential sum with primes (see [2], theorem 3, p.82; theorems 6 and 7, p.86). Starting at 1996, G.I.Arkhipov, K.Buriev and the author have obtained several results concerning the exceptional sets in some binary problems of Goldbach's type. These results used both the tools of the theory of Diophantine approximations and the "precise formulas" from Riemann's zeta function theory. At the same time, the method of estimating of linear sums with primes based on the measure theory was derived in the papers of G. L. Watson, D. Bruedern, R. D. Cook and A. Perelli.
Keywords: algebraic lattices, algebraic net, trigonometric sums of algebraic net with weights, weight functions.
@article{CHEB_2021_22_3_a12,
     author = {H. M. Saliba and V. N. Chubarikov},
     title = {On some additive problems of {Goldbach's} type},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {179--195},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a12/}
}
TY  - JOUR
AU  - H. M. Saliba
AU  - V. N. Chubarikov
TI  - On some additive problems of Goldbach's type
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 179
EP  - 195
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a12/
LA  - ru
ID  - CHEB_2021_22_3_a12
ER  - 
%0 Journal Article
%A H. M. Saliba
%A V. N. Chubarikov
%T On some additive problems of Goldbach's type
%J Čebyševskij sbornik
%D 2021
%P 179-195
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a12/
%G ru
%F CHEB_2021_22_3_a12
H. M. Saliba; V. N. Chubarikov. On some additive problems of Goldbach's type. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 179-195. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a12/

[1] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, 2-e izd., ispravlennoe i dopolnennoe, Fizmatlit, M., 1980, 144 pp.

[2] Vinogradov I. M., Osobye varianty metoda trigonometricheskikh summ., Fizmatlit, M., 1976, 144 pp. | MR

[3] Vinogradov I. M., Osnovy teorii chisel., Fizmatlit, M., 1983 | MR

[4] Hua Loo-Keng, Selected Papers, N.Y.–Heidelberg–Berlin, 1983, 888 pp. | MR | Zbl

[5] Hua Loo-Keng, “Some results in the additive prime number theory”, Quart. J. Math. Oxford, 9 (1938), 68–80 | DOI | MR

[6] Arkhipov G. I., Izbrannye trudy, Izd-vo Orlovskogo un-ta, Orel, 2013, 464 pp.

[7] Arkhipov G. I., Buriev K., Chubarikov V. N., “O moschnosti isklyuchitelnogo mnozhestva v binarnoi additivnoi probleme goldbakhova tipa”, Tr. MIAN, 218, 1997, 28–57 | Zbl

[8] Arkhipov G. I., Chubarikov V. N., “Ob isklyuchitelnom mnozhestve v binarnoi probleme goldbakhova tipa”, Dokl. RAN, 387:3 (2002), 295–296 | MR | Zbl

[9] Arkhipov G. I., Chubarikov V. N., “O mere “bolshikh dug” v razbienii Fareya”, Chebyshevskii sbornik, 12:4 (2011), 39–42 | MR | Zbl

[10] Brüdern J., Cook R. J., Perelli A., “The Values of Binary Linear Forms at Prime Arguments”, Sieve Methods, Exponential Sums and their Applications in Number Theory, eds. Greaves G. R. H., Harman G., Huxley M. N., Cambridge University Press, 1996, 87–100 | MR

[11] Brüdern J., “Some additive problems of Goldbach's type”, Functiones et Approximatio, XXVIII (2000), 45–73 | MR | Zbl

[12] Watson G. L., “On indefinite quadratic forms in five variables”, Proc. London Math. Soc., 3:3 (1953), 170–181 | DOI | MR | Zbl

[13] Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., Teoriya kratnykh trigonometricheskikh summ, Nauka. Gl. red. fiz.-mat. lit., M., 1987, 368 pp. | MR

[14] Arkhipov G. I., Chubarikov V. N., Karatsuba A. A., Trigonometric sums in number theory and analysis, De Gruyter expositions in mathematics, 39, Walter de Gruyter, Berlin–New York, 2004, 554 pp. | MR | Zbl

[15] Montgomery H. L., Vaughan R. C., “The exceptional set of Goldbach's problem”, Acta arithm., 27 (1975), 353–370 | DOI | MR | Zbl

[16] Cheng Jing-run, Liu Jian MIn, “The exceptional set of Goldbach-numbers (III)”, Chinese Quart. J. Math., 4:1 (1989), 1–15 | MR

[17] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, 2-e izd., Nauka. Gl. red. fiz.-mat. lit-ry, M., 1983, 240 pp. | MR

[18] Pan Chengdong, Pan Chenbiao, Goldbach conjecture, Science Press, Bejing (China), 1992, 240 pp. | MR | Zbl

[19] Kassels Dzh. V. S., Vvedenie v teoriyu diofantovykh priblizhenii., Izd-vo inostr. lit., M., 1961, 213 pp.

[20] Prakhar K., Raspredelenie prostykh chisel., Mir, M., 1967, 512 pp.

[21] Arkhipov G. I., Sadovnichii V. A., Chubarikov V. N., Lektsii po matematicheskomu analizu, 4-e izd., ispr., Drofa, M., 2004, 640 pp.

[22] Popov O. V., Arifmeticheskie prilozheniya otsenok summ G. Veilya ot mnogochlenov rastuschei stepeni, Kand. dis., MGU, M., 1995

[23] Tyrina O. V., Srednie znacheniya trigonometricheskikh summ, Kand. dis., MGU, M., 1989

[24] Chubarikov V. N., “Kratnye trigonometricheskie summy s prostymi chislami”, Dokl. AN SSSR, 278:2 (1984), 302–304 | MR | Zbl

[25] Chubarikov V. N., “Otsenki kratnykh trigonometricheskikh summ s prostymi chislami”, Izv. AN SSSR, ser. matem., 49:5 (1985), 1031–1067 | MR | Zbl