Trigonometric sums of grids of algebraic lattices with infinitely differentiable weights
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 166-178

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper continues the authors' research on the evaluation of trigonometric sums of an algebraic grid with weights. The case of an arbitrary weight function of infinite order is considered. For the parameter $\vec{m}$ of the trigonometric sum $S_{M(t),\vec\rho_\infty} (\vec m)$, three cases are highlighted. If $\vec{m}$ belongs to the algebraic lattice $\Lambda (t \cdot T(\vec a))$, then for any natural $r$ the asymptotic formula is valid $$ S_{M(t),\vec\rho_\infty}(t(m,\ldots, m))=1+O\left(\frac{\ln^{s-1}\det \Lambda(t)} { (\det\Lambda(t))^{r+1}}\right). $$ If $\vec{m}$ does not belong to the algebraic lattice $\Lambda(t\cdot T(\vec a))$, then two vectors are defined $\vec{n}_\Lambda(\vec{m})=(n_1,\ldots,n_s)$ and $\vec{k}_\Lambda(\vec{m})$ from the conditions $\vec{k}_\Lambda(\vec{m})\in\Lambda$, $\vec{m}=\vec{n}_\Lambda(\vec{M})+\vec{K}_\lambda(\vec{m})$ and the product $q(\vec{n}_\lambda(\vec{m}))=\overline{n_1}\cdot\ldots\cdot\overline{n_s}$ is minimal. Asymptotic estimation is proved $$ |S_{M(t),\vec\rho_\infty}(\vec{m})|\le B(r,\infty)\left(\frac{1-\delta(\vec{k}_\Lambda(\vec{m}))}{(q(\vec{n}_\Lambda(\vec{m})))^{r+1}}+O\left(\frac{q(\vec{n}_\Lambda(\vec{m}))^{r+1}\ln^{s-1}\det \Lambda(t)}{ (\det\Lambda(t))^{r+1}}\right)\right). $$
Keywords: algebraic lattices, algebraic net, trigonometric sums of algebraic net with weights, weight functions.
@article{CHEB_2021_22_3_a11,
     author = {E. M. Rarova and N. N. Dobrovol'skii and I. Yu. Rebrova and N. M. Dobrovol'skii},
     title = {Trigonometric sums of grids of algebraic lattices with infinitely differentiable weights},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {166--178},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a11/}
}
TY  - JOUR
AU  - E. M. Rarova
AU  - N. N. Dobrovol'skii
AU  - I. Yu. Rebrova
AU  - N. M. Dobrovol'skii
TI  - Trigonometric sums of grids of algebraic lattices with infinitely differentiable weights
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 166
EP  - 178
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a11/
LA  - ru
ID  - CHEB_2021_22_3_a11
ER  - 
%0 Journal Article
%A E. M. Rarova
%A N. N. Dobrovol'skii
%A I. Yu. Rebrova
%A N. M. Dobrovol'skii
%T Trigonometric sums of grids of algebraic lattices with infinitely differentiable weights
%J Čebyševskij sbornik
%D 2021
%P 166-178
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a11/
%G ru
%F CHEB_2021_22_3_a11
E. M. Rarova; N. N. Dobrovol'skii; I. Yu. Rebrova; N. M. Dobrovol'skii. Trigonometric sums of grids of algebraic lattices with infinitely differentiable weights. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 166-178. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a11/