Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_3_a11, author = {E. M. Rarova and N. N. Dobrovol'skii and I. Yu. Rebrova and N. M. Dobrovol'skii}, title = {Trigonometric sums of grids of algebraic lattices with infinitely differentiable weights}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {166--178}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a11/} }
TY - JOUR AU - E. M. Rarova AU - N. N. Dobrovol'skii AU - I. Yu. Rebrova AU - N. M. Dobrovol'skii TI - Trigonometric sums of grids of algebraic lattices with infinitely differentiable weights JO - Čebyševskij sbornik PY - 2021 SP - 166 EP - 178 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a11/ LA - ru ID - CHEB_2021_22_3_a11 ER -
%0 Journal Article %A E. M. Rarova %A N. N. Dobrovol'skii %A I. Yu. Rebrova %A N. M. Dobrovol'skii %T Trigonometric sums of grids of algebraic lattices with infinitely differentiable weights %J Čebyševskij sbornik %D 2021 %P 166-178 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a11/ %G ru %F CHEB_2021_22_3_a11
E. M. Rarova; N. N. Dobrovol'skii; I. Yu. Rebrova; N. M. Dobrovol'skii. Trigonometric sums of grids of algebraic lattices with infinitely differentiable weights. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 166-178. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a11/
[1] Dobrovolskii N. M., O kvadraturnykh formulakh na klassakh $E^\alpha_s(c)$ i $H^\alpha_s(c)$, Dep. v VINITI 24.08.84, No 609, 84 pp.
[2] Dobrovolskii N. M., Teoretiko–chislovye setki i ikh prilozheniya, Dis. ... kand. fiz.-mat. nauk, Tula, 1984 | Zbl
[3] N. M. Dobrovolskii, “O sovremennykh problemakh teorii giperbolicheskoi dzeta-funktsii reshetok”, Chebyshevskii sb., 16:1 (2015), 176–190 | MR | Zbl
[4] N. N. Dobrovolskii, “O dvukh asimptoticheskikh formulakh v teorii giperbolicheskoi dzeta-funktsii reshetok”, Chebyshevckii sbornik, 19:3 (2018), 109–134 | MR | Zbl
[5] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, vtoroe izdanie, MTsNMO, M., 2004
[6] Rarova E. M., “Razlozhenie trigonometricheskoi summy setki s vesami v ryad po tochkam reshetki”, Izv. TulGU. Estestvennye nauki, 2014, no. 1-1, 37–49
[7] Rarova E. M., “Trigonometricheskie summy setki s vesami dlya tselochislennoi reshetki”, Izvestiya Tulskogo gosudarstvennogo universiteta. Estestvennye nauki, 2014, no. 3, 34–39
[8] Rarova E. M., “Trigonometricheskie summy algebraicheskikh setok”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy i prilozheniya, Materialy XIII Mezhdunarodnoi konferentsii, posvyaschennoi vosmidesyatipyatiletiyu so dnya rozhdeniya professora Sergeya Sergeevicha Ryshkova, Tulskii gosudarstvennyi pedagogichekii universitet im. L. N. Tolstogo, 2015, 356–359
[9] Rarova E. M., “O vzveshennom chisle tochek algebraicheskoi setki”, Chebyshevckii sbornik, 19:1 (2018), 200–219 | MR | Zbl
[10] E. M. Rarova, “Trigonometricheskie summy setok algebraicheskikh reshetok”, Chebyshevckii sbornik, 20:2 (2019), 399–405 | MR | Zbl
[11] E. M. Rarova, N. N. Dobrovolskii, I. Yu. Rebrova, “Asimptoticheskaya otsenka dlya trigonometricheskikh summ algebraicheskikh setok”, Chebyshevckii sbornik, 21:3 (2020), 232–240 | MR | Zbl
[12] Rebrov E. D., “Kvadraturnye formuly s modifitsirovannymi algebraicheskimi setkami”, Chebyshevskii sbornik, 13:3(43) (2012), 53–90 | Zbl
[13] Rebrova I. Yu., Dobrovolskii N. M., Dobrovolskii N. N., Balaba I. N., Esayan A. R., Basalov Yu. A., Teoretiko-chislovoi metod v priblizhennom analize i ego realizatsiya v POIVS «TMK», Monogr. V 2 ch., v. I, ed. N. M. Dobrovolskii, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2016, 232 pp. | MR
[14] Frolov K. K., “Otsenki sverkhu pogreshnosti kvadraturnykh formul na klassakh funktsii”, DAN SSSR, 231:4 (1976), 818–821 | MR | Zbl
[15] Frolov K. K., Kvadraturnye formuly na klassakh funktsii, Dis. ... kand. fiz.-mat. nauk, VTs AN SSSR, M., 1979 | MR