Trigonometric sums of grids of algebraic lattices with infinitely differentiable weights
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 166-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper continues the authors' research on the evaluation of trigonometric sums of an algebraic grid with weights. The case of an arbitrary weight function of infinite order is considered. For the parameter $\vec{m}$ of the trigonometric sum $S_{M(t),\vec\rho_\infty} (\vec m)$, three cases are highlighted. If $\vec{m}$ belongs to the algebraic lattice $\Lambda (t \cdot T(\vec a))$, then for any natural $r$ the asymptotic formula is valid $$ S_{M(t),\vec\rho_\infty}(t(m,\ldots, m))=1+O\left(\frac{\ln^{s-1}\det \Lambda(t)} { (\det\Lambda(t))^{r+1}}\right). $$ If $\vec{m}$ does not belong to the algebraic lattice $\Lambda(t\cdot T(\vec a))$, then two vectors are defined $\vec{n}_\Lambda(\vec{m})=(n_1,\ldots,n_s)$ and $\vec{k}_\Lambda(\vec{m})$ from the conditions $\vec{k}_\Lambda(\vec{m})\in\Lambda$, $\vec{m}=\vec{n}_\Lambda(\vec{M})+\vec{K}_\lambda(\vec{m})$ and the product $q(\vec{n}_\lambda(\vec{m}))=\overline{n_1}\cdot\ldots\cdot\overline{n_s}$ is minimal. Asymptotic estimation is proved $$ |S_{M(t),\vec\rho_\infty}(\vec{m})|\le B(r,\infty)\left(\frac{1-\delta(\vec{k}_\Lambda(\vec{m}))}{(q(\vec{n}_\Lambda(\vec{m})))^{r+1}}+O\left(\frac{q(\vec{n}_\Lambda(\vec{m}))^{r+1}\ln^{s-1}\det \Lambda(t)}{ (\det\Lambda(t))^{r+1}}\right)\right). $$
Keywords: algebraic lattices, algebraic net, trigonometric sums of algebraic net with weights, weight functions.
@article{CHEB_2021_22_3_a11,
     author = {E. M. Rarova and N. N. Dobrovol'skii and I. Yu. Rebrova and N. M. Dobrovol'skii},
     title = {Trigonometric sums of grids of algebraic lattices with infinitely differentiable weights},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {166--178},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a11/}
}
TY  - JOUR
AU  - E. M. Rarova
AU  - N. N. Dobrovol'skii
AU  - I. Yu. Rebrova
AU  - N. M. Dobrovol'skii
TI  - Trigonometric sums of grids of algebraic lattices with infinitely differentiable weights
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 166
EP  - 178
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a11/
LA  - ru
ID  - CHEB_2021_22_3_a11
ER  - 
%0 Journal Article
%A E. M. Rarova
%A N. N. Dobrovol'skii
%A I. Yu. Rebrova
%A N. M. Dobrovol'skii
%T Trigonometric sums of grids of algebraic lattices with infinitely differentiable weights
%J Čebyševskij sbornik
%D 2021
%P 166-178
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a11/
%G ru
%F CHEB_2021_22_3_a11
E. M. Rarova; N. N. Dobrovol'skii; I. Yu. Rebrova; N. M. Dobrovol'skii. Trigonometric sums of grids of algebraic lattices with infinitely differentiable weights. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 166-178. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a11/

[1] Dobrovolskii N. M., O kvadraturnykh formulakh na klassakh $E^\alpha_s(c)$ i $H^\alpha_s(c)$, Dep. v VINITI 24.08.84, No 609, 84 pp.

[2] Dobrovolskii N. M., Teoretiko–chislovye setki i ikh prilozheniya, Dis. ... kand. fiz.-mat. nauk, Tula, 1984 | Zbl

[3] N. M. Dobrovolskii, “O sovremennykh problemakh teorii giperbolicheskoi dzeta-funktsii reshetok”, Chebyshevskii sb., 16:1 (2015), 176–190 | MR | Zbl

[4] N. N. Dobrovolskii, “O dvukh asimptoticheskikh formulakh v teorii giperbolicheskoi dzeta-funktsii reshetok”, Chebyshevckii sbornik, 19:3 (2018), 109–134 | MR | Zbl

[5] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, vtoroe izdanie, MTsNMO, M., 2004

[6] Rarova E. M., “Razlozhenie trigonometricheskoi summy setki s vesami v ryad po tochkam reshetki”, Izv. TulGU. Estestvennye nauki, 2014, no. 1-1, 37–49

[7] Rarova E. M., “Trigonometricheskie summy setki s vesami dlya tselochislennoi reshetki”, Izvestiya Tulskogo gosudarstvennogo universiteta. Estestvennye nauki, 2014, no. 3, 34–39

[8] Rarova E. M., “Trigonometricheskie summy algebraicheskikh setok”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy i prilozheniya, Materialy XIII Mezhdunarodnoi konferentsii, posvyaschennoi vosmidesyatipyatiletiyu so dnya rozhdeniya professora Sergeya Sergeevicha Ryshkova, Tulskii gosudarstvennyi pedagogichekii universitet im. L. N. Tolstogo, 2015, 356–359

[9] Rarova E. M., “O vzveshennom chisle tochek algebraicheskoi setki”, Chebyshevckii sbornik, 19:1 (2018), 200–219 | MR | Zbl

[10] E. M. Rarova, “Trigonometricheskie summy setok algebraicheskikh reshetok”, Chebyshevckii sbornik, 20:2 (2019), 399–405 | MR | Zbl

[11] E. M. Rarova, N. N. Dobrovolskii, I. Yu. Rebrova, “Asimptoticheskaya otsenka dlya trigonometricheskikh summ algebraicheskikh setok”, Chebyshevckii sbornik, 21:3 (2020), 232–240 | MR | Zbl

[12] Rebrov E. D., “Kvadraturnye formuly s modifitsirovannymi algebraicheskimi setkami”, Chebyshevskii sbornik, 13:3(43) (2012), 53–90 | Zbl

[13] Rebrova I. Yu., Dobrovolskii N. M., Dobrovolskii N. N., Balaba I. N., Esayan A. R., Basalov Yu. A., Teoretiko-chislovoi metod v priblizhennom analize i ego realizatsiya v POIVS «TMK», Monogr. V 2 ch., v. I, ed. N. M. Dobrovolskii, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2016, 232 pp. | MR

[14] Frolov K. K., “Otsenki sverkhu pogreshnosti kvadraturnykh formul na klassakh funktsii”, DAN SSSR, 231:4 (1976), 818–821 | MR | Zbl

[15] Frolov K. K., Kvadraturnye formuly na klassakh funktsii, Dis. ... kand. fiz.-mat. nauk, VTs AN SSSR, M., 1979 | MR