Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_3_a10, author = {I. A. Martyanov}, title = {Solving the {Delsarte} problem for $4$-designs on the sphere $\mathbb{S}^{2}$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {154--165}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a10/} }
I. A. Martyanov. Solving the Delsarte problem for $4$-designs on the sphere $\mathbb{S}^{2}$. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 154-165. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a10/
[1] Andreev N.N., “Minimalnyi dizain 11-go poryadka na trekhmernoi sfere”, Matem. zametki, 67:4 (2000), 489–497 | Zbl
[2] Arestov V.V., Babenko A.G., “O skheme Delsarta otsenki kontaktnykh chisel”, Trudy MIAN, 219, 1997, 44–73 | Zbl
[3] Bondarenko A.V., Gorbachev D.V., “Minimalnye vzveshennye 4-dizainy na sfere $S^{2}$”, Matem. zametki, 91:5 (2012), 787–790 | Zbl
[4] Gorbachev D.V., “Nizhnie asimptoticheskie otsenki moschnosti dizainov na sfere $S^{2}$ i share $B^{2}$”, Izvestiya TulGU. Estestvennye nauki, 2014, no. 4, 11–25
[5] Gorbachev D.V., Svistunov S.S., Modelirovanie interaktivnogo osvescheniya v 3D-grafike i sfericheskie dizainy, Izd-vo TulGU, Tula, 2014
[6] Kuklin N.A., Analiticheskie metody v ekstremalnykh geometricheskikh zadachakh na evklidovoi sfere, Diss. \ldots kand. fiz.-mat. nauk, IMM Uro RAN, Ekaterinburg, 2014
[7] Martyanov I.A., “Konstanta Nikolskogo dlya trigonometricheskikh polinomov s periodicheskim vesom Gegenbauera”, Chebyshevskii sbornik, 21:1 (2020), 247–258 | MR
[8] Mysovskikh I.P., Interpolyatsionnye kubaturnye formuly, Nauka, M., 1981 | MR
[9] Sege G., Ortogonalnye mnogochleny, Fizmatlit, M., 1962
[10] Shtrom D.V., “Metod Delsarta v zadache o kontaktnykh chislakh evklidovykh prostranstv bolshikh razmernostei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 8, no. 2, 2002, 162–189 | MR
[11] Yudin V.A., “Nizhnie otsenki dlya sfericheskikh dizainov”, Izv. RAN. Ser. matem., 61:3 (1997), 213–223 | MR | Zbl
[12] Bondarenko A., Radchenko D., Viazovska M., “Optimal asymptotic bounds for spherical designs”, Ann. Math., 178:2 (2013), 443–452 | DOI | MR | Zbl
[13] Boyvalenkov P., Nikova S., “Improvements of the lower bounds on the size of some spherical designs”, Mathematica Balkanica, 12 (1998), 151–160 | MR | Zbl
[14] Breiding P., Rose K., Timme S., Certifying zeros of polynomial systems using interval arithmetic, arXiv: 2011.05000
[15] Delsarte P., Goethals J.M., Seidel J.J., “Spherical codes and design”, Geom. Dedicata, 6:3 (1977), 363–388 | DOI | MR | Zbl
[16] Levenshtein V.I., “Universal bounds for codes and designs”, Handbook of Coding Theory, eds. V.S. Pless and W.C. Huffman, Elsevier, Amsterdam, 1998 | MR | Zbl
[17] Odlyzko A.M., Sloane N.J.A., “New bounds on the number of unit spheres that can touch a unit sphere in $n$ dimensions”, J. Combin. Theory Ser. A, 26:2 (1979), 210–214 | DOI | MR | Zbl