Solving the Delsarte problem for $4$-designs on the sphere $\mathbb{S}^{2}$
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 154-165.

Voir la notice de l'article provenant de la source Math-Net.Ru

An important problem in discrete geometry and computational mathematics is the estimation of the minimum number of nodes $N(s)$ of a quadrature formula (weighted $s$-design) of the form $\frac{1}{|\mathbb{S}^{2}|}\int_{\mathbb{S}^{2}}f(x) dx=\sum_{\nu=1}^{N}\lambda_{\nu}f(x_{\nu})$ with positive weights, exact for all spherical polynomials of degree at most $s$. P. Delsarte, J.M Goethals, and J.J. Seidel (1977) to estimate $N(s)$ from below formulated an extremal problem $A_{s}$ for expansions in terms of orthogonal Gegenbauer (Legendre for $\mathbb{S}^{2}$) polynomials with restrictions on the sign of the Fourier–Gegenbauer coefficients. Using a version of this problem $A_{s,n}$ on polynomials of degree $n=s$, they proved the classical estimate for tight designs. This estimate is sharp and gives a solution to $A_{s}$ only in exceptional cases ($s=0,1,2,3,5$ for $\mathbb{S}^{2}$). For general dimensions, there are cases when $A_{s,n}>A_{s,s}$ for $n>s$, which leads to better estimates for $N(s)$. In particular, N.N. Andreev (2000) proved in this way the minimality of an $11$-design on the sphere $\mathbb{S}^{3}$. Related Delsarte problems are also formulated for estimating the cardinality of spherical codes. In this direction, V.V. Arestov and A.G. Babenko (1997), based on the methods of infinite-dimensional linear programming, solved an analog of the $A_{s}$ problem for the case of spherical $0.5$-codes on the sphere $\mathbb{S}^{3}$ (the kissing number problem). Then this method was developed in the works of D.V. Shtrom, N.A. Kuklin. A.V. Bondarenko and D.V. Gorbachev (2012) showed that $N(4)=10$. This fact follows from the estimate $A_{4,7}>9$, previously obtained by P. Boyvalenkov and S. Nikova (1998), and the existence of weighted 4-designs of 10 nodes. Nevertheless, it is of interest to solve the problem $A_ {4}$ exactly, aiming to transfer the method of calculating $A_ {s}$ to the general dimensions and orders of designs. In this paper, it is proved that $$ A_{4}=A_{4,22}=9.31033\ldots $$ For this, the Arestov–Babenko–Kuklin method is adapted and the problem is reduced to the construction of a special quadrature formula for $[-1,1]$, consistent with the form of the assumed extremal function (polynomial). The proposed method is based on the use of nonlinear programming, in particular, semidefinite programming, and the solution of a polynomial system of equations arising from a quadrature formula. To prove the existence of an analytical solution of such a system in the neighborhood of the numerical solution, interval Krawczyk's method from HomotopyContinuation.jl is used.
Keywords: unit sphere, spherical design, quadrature formula, Delsarte problem.
@article{CHEB_2021_22_3_a10,
     author = {I. A. Martyanov},
     title = {Solving the {Delsarte} problem for $4$-designs on the sphere $\mathbb{S}^{2}$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {154--165},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a10/}
}
TY  - JOUR
AU  - I. A. Martyanov
TI  - Solving the Delsarte problem for $4$-designs on the sphere $\mathbb{S}^{2}$
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 154
EP  - 165
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a10/
LA  - ru
ID  - CHEB_2021_22_3_a10
ER  - 
%0 Journal Article
%A I. A. Martyanov
%T Solving the Delsarte problem for $4$-designs on the sphere $\mathbb{S}^{2}$
%J Čebyševskij sbornik
%D 2021
%P 154-165
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a10/
%G ru
%F CHEB_2021_22_3_a10
I. A. Martyanov. Solving the Delsarte problem for $4$-designs on the sphere $\mathbb{S}^{2}$. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 154-165. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a10/

[1] Andreev N.N., “Minimalnyi dizain 11-go poryadka na trekhmernoi sfere”, Matem. zametki, 67:4 (2000), 489–497 | Zbl

[2] Arestov V.V., Babenko A.G., “O skheme Delsarta otsenki kontaktnykh chisel”, Trudy MIAN, 219, 1997, 44–73 | Zbl

[3] Bondarenko A.V., Gorbachev D.V., “Minimalnye vzveshennye 4-dizainy na sfere $S^{2}$”, Matem. zametki, 91:5 (2012), 787–790 | Zbl

[4] Gorbachev D.V., “Nizhnie asimptoticheskie otsenki moschnosti dizainov na sfere $S^{2}$ i share $B^{2}$”, Izvestiya TulGU. Estestvennye nauki, 2014, no. 4, 11–25

[5] Gorbachev D.V., Svistunov S.S., Modelirovanie interaktivnogo osvescheniya v 3D-grafike i sfericheskie dizainy, Izd-vo TulGU, Tula, 2014

[6] Kuklin N.A., Analiticheskie metody v ekstremalnykh geometricheskikh zadachakh na evklidovoi sfere, Diss. \ldots kand. fiz.-mat. nauk, IMM Uro RAN, Ekaterinburg, 2014

[7] Martyanov I.A., “Konstanta Nikolskogo dlya trigonometricheskikh polinomov s periodicheskim vesom Gegenbauera”, Chebyshevskii sbornik, 21:1 (2020), 247–258 | MR

[8] Mysovskikh I.P., Interpolyatsionnye kubaturnye formuly, Nauka, M., 1981 | MR

[9] Sege G., Ortogonalnye mnogochleny, Fizmatlit, M., 1962

[10] Shtrom D.V., “Metod Delsarta v zadache o kontaktnykh chislakh evklidovykh prostranstv bolshikh razmernostei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 8, no. 2, 2002, 162–189 | MR

[11] Yudin V.A., “Nizhnie otsenki dlya sfericheskikh dizainov”, Izv. RAN. Ser. matem., 61:3 (1997), 213–223 | MR | Zbl

[12] Bondarenko A., Radchenko D., Viazovska M., “Optimal asymptotic bounds for spherical designs”, Ann. Math., 178:2 (2013), 443–452 | DOI | MR | Zbl

[13] Boyvalenkov P., Nikova S., “Improvements of the lower bounds on the size of some spherical designs”, Mathematica Balkanica, 12 (1998), 151–160 | MR | Zbl

[14] Breiding P., Rose K., Timme S., Certifying zeros of polynomial systems using interval arithmetic, arXiv: 2011.05000

[15] Delsarte P., Goethals J.M., Seidel J.J., “Spherical codes and design”, Geom. Dedicata, 6:3 (1977), 363–388 | DOI | MR | Zbl

[16] Levenshtein V.I., “Universal bounds for codes and designs”, Handbook of Coding Theory, eds. V.S. Pless and W.C. Huffman, Elsevier, Amsterdam, 1998 | MR | Zbl

[17] Odlyzko A.M., Sloane N.J.A., “New bounds on the number of unit spheres that can touch a unit sphere in $n$ dimensions”, J. Combin. Theory Ser. A, 26:2 (1979), 210–214 | DOI | MR | Zbl