Lubin--Tate extensions and Carlitz module over a projective line: an explicit connection
Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 90-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we consider different approaches for constructing maximal abelian extensions for local and global geometric fields. The Lubin–Tate theory plays key role in the maximal abelian extension construction for local geometric fields. In the case of global geometric fields, Drinfeld modules are of particular interest. In this paper we consider the simpliest special case of Drinfeld modules for projective line which is called the Carlitz module. In the introduction, we provide motivation and a brief historical background on the topics covered in the work. In the first and second sections we provide brief information about Lubin–Tate modules and Carlitz module. In the third section we present two main results: an explicit connection between the local and global field theory in the geometric case for projective line over finite field: it is proved that the extension tower of Carlitz module induces the tower of the Lubin–Tate extensions. a connection between Artin maps of extensions of a function field of an arbitrary projective smooth irreducible curve and extensions of completions of local rings at closed points of this curve. In the last section we formulate different open problems and interesting directions for further research, which include generalization first result for an arbitrary smooth projective curve over a finite field and consideration Drinfeld modules of higher rank.
Keywords: class field theory, Lubin–Tate theory, Carlitz module, Drinfeld modules, Artin map, maximal abelian extension, projective line over a finite field.
@article{CHEB_2021_22_2_a5,
     author = {N. V. Elizarov and S. V. Vostokov},
     title = {Lubin--Tate extensions and {Carlitz} module over a projective line: an explicit connection},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {90--103},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a5/}
}
TY  - JOUR
AU  - N. V. Elizarov
AU  - S. V. Vostokov
TI  - Lubin--Tate extensions and Carlitz module over a projective line: an explicit connection
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 90
EP  - 103
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a5/
LA  - en
ID  - CHEB_2021_22_2_a5
ER  - 
%0 Journal Article
%A N. V. Elizarov
%A S. V. Vostokov
%T Lubin--Tate extensions and Carlitz module over a projective line: an explicit connection
%J Čebyševskij sbornik
%D 2021
%P 90-103
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a5/
%G en
%F CHEB_2021_22_2_a5
N. V. Elizarov; S. V. Vostokov. Lubin--Tate extensions and Carlitz module over a projective line: an explicit connection. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 90-103. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a5/

[1] Vostokov S. V., “Yavnaya forma zakona vzaimnosti”, Izvestiya Rossiiskoi akademii nauk. Seriya matematicheskaya, 42:6 (1978), 1288–1321 | MR | Zbl

[2] Vostokov S. V., “Simvol Gilberta v diskretno normirovannom pole”, Zapiski nauchnykh seminarov POMI, 94, 1979, 50–69 | Zbl

[3] Shafarevich I. R., “Obschii zakon vzaimnosti”, Matematicheskii sbornik, 26:1 (1950), 113–146 | Zbl

[4] Silverman J. H., The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer Science Business Media, 2009 | DOI | MR | Zbl

[5] Strickland N. P., “Formal schemes and formal groups”, Contemporary Mathematics, 239, 1999, 263–352 | DOI | MR | Zbl

[6] Yoshida T., “Local class field theory via Lubin-Tate theory”, Annales de la Faculté des sciences de Toulouse: Mathématiques, 17:2 (2008), 411–438 | MR | Zbl

[7] Goss D., Basic structures of function field arithmetic, Springer Science $\$ Business Media, 2012 | MR

[8] Rosen M., Number theory in function fields, Graduate Texts in Mathematics, 210, Springer Science $\$ Business Media, 2013 | MR

[9] P. Tóth, Geometric abelian class field theory, Master Thesis, Universiteit Utrecht, 2011

[10] Ivasava K., Lokalnaya teoriya polei klassov, Mir, 1983 | MR

[11] Thakur D. S., Function field arithmetic, World Scientific, 2004 | MR | Zbl