Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_2_a5, author = {N. V. Elizarov and S. V. Vostokov}, title = {Lubin--Tate extensions and {Carlitz} module over a projective line: an explicit connection}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {90--103}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a5/} }
TY - JOUR AU - N. V. Elizarov AU - S. V. Vostokov TI - Lubin--Tate extensions and Carlitz module over a projective line: an explicit connection JO - Čebyševskij sbornik PY - 2021 SP - 90 EP - 103 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a5/ LA - en ID - CHEB_2021_22_2_a5 ER -
N. V. Elizarov; S. V. Vostokov. Lubin--Tate extensions and Carlitz module over a projective line: an explicit connection. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 90-103. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a5/
[1] Vostokov S. V., “Yavnaya forma zakona vzaimnosti”, Izvestiya Rossiiskoi akademii nauk. Seriya matematicheskaya, 42:6 (1978), 1288–1321 | MR | Zbl
[2] Vostokov S. V., “Simvol Gilberta v diskretno normirovannom pole”, Zapiski nauchnykh seminarov POMI, 94, 1979, 50–69 | Zbl
[3] Shafarevich I. R., “Obschii zakon vzaimnosti”, Matematicheskii sbornik, 26:1 (1950), 113–146 | Zbl
[4] Silverman J. H., The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer Science Business Media, 2009 | DOI | MR | Zbl
[5] Strickland N. P., “Formal schemes and formal groups”, Contemporary Mathematics, 239, 1999, 263–352 | DOI | MR | Zbl
[6] Yoshida T., “Local class field theory via Lubin-Tate theory”, Annales de la Faculté des sciences de Toulouse: Mathématiques, 17:2 (2008), 411–438 | MR | Zbl
[7] Goss D., Basic structures of function field arithmetic, Springer Science $\$ Business Media, 2012 | MR
[8] Rosen M., Number theory in function fields, Graduate Texts in Mathematics, 210, Springer Science $\$ Business Media, 2013 | MR
[9] P. Tóth, Geometric abelian class field theory, Master Thesis, Universiteit Utrecht, 2011
[10] Ivasava K., Lokalnaya teoriya polei klassov, Mir, 1983 | MR
[11] Thakur D. S., Function field arithmetic, World Scientific, 2004 | MR | Zbl