Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_2_a4, author = {A. V. Galatenko and A. E. Pankratiev and V. M. Staroverov}, title = {An algorithm for checking the existence of subquasigroups}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {76--89}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a4/} }
TY - JOUR AU - A. V. Galatenko AU - A. E. Pankratiev AU - V. M. Staroverov TI - An algorithm for checking the existence of subquasigroups JO - Čebyševskij sbornik PY - 2021 SP - 76 EP - 89 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a4/ LA - ru ID - CHEB_2021_22_2_a4 ER -
A. V. Galatenko; A. E. Pankratiev; V. M. Staroverov. An algorithm for checking the existence of subquasigroups. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 76-89. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a4/
[1] Markov V. T., Mikhalev A. V., Nechaev A. A., “Nonassociative algebraic structures in cryptography and coding”, Journal of Mathematical Sciences, 245:2 (2020), 178–196 | DOI | MR | Zbl
[2] Shannon C., “Communication theory of secrecy systems”, Bell System Technical Journal, 28:4 (1949), 656–715 | DOI | MR | Zbl
[3] Glukhov M. M., “O primeneniyakh kvazigrupp v kriptografii”, Prikladnaya diskretnaya matematika, 2008, no. 2, 28–32 | Zbl
[4] Shcherbacov V. A., “Quasigroups in cryptology”, Computer Science Journal of Moldova, 17:2(50) (2009), 193–228 | MR | Zbl
[5] Gligoroski D., Ødegǎrd R. S., Mihova M., Knapskog S. J., Drapal A., Klíma V., Amundsen J., El-Hadedy M., “Cryptographic hash function EDON-R'”, Proceedings of the 1st International Workshop on Security and Communication Networks, 2009, 1–9
[6] Gligoroski D., On the S-box in GAGE and InGAGE, 2019 (accessed 14 October 2020) http://gageingage.org/upload/LWC2019NISTWorkshop.pdf
[7] Gligoroski D., Ødeg{å}rd R., Jensen R., Perret L., Faugère J.-C., Knapskog S., Markovski S., “MQQ–SIG: an ultra-fast and provably CMA resistant digital signature scheme”, INTRUST'11: Proceedings of the Third international conference on Trusted Systems, 2011, 184–203 | DOI
[8] Horváth G, Nehaniv Gh. L, Szabó Cs., “An assertion concerning functionally complete algebras and NP-completeness”, Theoretical Computer Science, 407 (2008), 591–595 | DOI | MR | Zbl
[9] Larose B., Zádori L., “Taylor terms, constraint satisfaction and the complexity of polynomial equations over finite algebras”, International Journal of Algebra and Computation, 16 (2006), 563–581 | DOI | MR | Zbl
[10] Cameron P.J., “Almost all quasigroups have rank 2”, Discrete Mathematics, 106–107 (1992), 111–115 | DOI | MR | Zbl
[11] Galatenko A. V., Pankratiev A.E., “The complexity of checking the polynomial completeness of finite quasigroups”, Discrete Mathematics and Applications, 30:3 (2020), 169–175 | DOI | MR | Zbl
[12] Galatenko A. V., Pankratiev A.E., Staroverov V. M., “Efficient verification of polynomial completeness of quasigroups”, Lobachevskii Journal of Mathematics, 41:8 (2020) (to appear) | DOI | MR
[13] Jacobson M. T., Matthews P., “Generating uniformly distributed random latin squares”, Journal of Combinatorial Designs, 4:6 (1996), 405–437 | 3.0.CO;2-J class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[14] Galatenko A. V., Nosov V. A., Pankratiev A.E., “Latin squares over quasigroups”, Lobachevskii Journal of Mathematics, 41:2 (2020), 194–203 | DOI | MR | Zbl
[15] Sobyanin P. I., “Ob algoritme proverki nalichiya podkvazigruppy v kvazigruppe”, Intellektualnye sistemy. Teoriya i prilozheniya, 23:2 (2019), 79–84
[16] Galatenko A. V., Pankratev A. E., Staroverov V. M., “Ob odnom algoritme proverki suschestvovaniya netrivialnykh podkvazigrupp”, Materialy XVIII Mezhdunarodnoi konferentsii «Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii» (Tula, 2020), 150–153