Values of hypergeometric $F$-series at polyadic Liouvillea points
Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 536-542

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper proves infinite algebraic independence of the values of hypergeometric $F$ – series at polyadic Liouville points. Hypergeometric functions are defined for $|z| 1 $ by the power series: $$ \sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \cdots\left(\alpha_{r}\right)_{n}}{\left(\beta_{1}\right)_{n} \ldots\left(\beta_{s}\right)_{n} n !} z^{n}. $$ $F$ – series have form $f_n = \sum_{n=0}^{\infty}a_n n! z^n$ whose coefficients $a_n$ satisfy some arithmetic properties. These series converge in the field $\mathbb{Q}_p$ of $p$ – adic numbers and their algebraic extensions $\mathbb{K}_v$. Polyadic number is a series of the form $\sum_{n=0}^{\infty} a_nn!, a_n \in \mathbb{Z}$. Liouville number is a real number x with the property that, for every positive integer n, there exist infinitely many pairs of integers $(p, q)$ with $q > 1$ such that $0 \left| x - \frac{p}{q} \right| \frac{1}{q^n}. $ The polyadic Liouville number $\alpha$ has the property that for any numbers $P, D$ there exists an integer $|A|$ such that for all primes $p \leq P$ the inequality $|\alpha - A|_p A^{-D}. $
Keywords: hypergeometric $F$-series, polyadic Liouville numbers.
@article{CHEB_2021_22_2_a35,
     author = {E. Yu. Yudenkova},
     title = {Values of hypergeometric $F$-series at polyadic {Liouvillea} points},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {536--542},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a35/}
}
TY  - JOUR
AU  - E. Yu. Yudenkova
TI  - Values of hypergeometric $F$-series at polyadic Liouvillea points
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 536
EP  - 542
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a35/
LA  - ru
ID  - CHEB_2021_22_2_a35
ER  - 
%0 Journal Article
%A E. Yu. Yudenkova
%T Values of hypergeometric $F$-series at polyadic Liouvillea points
%J Čebyševskij sbornik
%D 2021
%P 536-542
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a35/
%G ru
%F CHEB_2021_22_2_a35
E. Yu. Yudenkova. Values of hypergeometric $F$-series at polyadic Liouvillea points. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 536-542. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a35/