Values of hypergeometric $F$-series at polyadic Liouvillea points
Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 536-542.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper proves infinite algebraic independence of the values of hypergeometric $F$ – series at polyadic Liouville points. Hypergeometric functions are defined for $|z| 1 $ by the power series: $$ \sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \cdots\left(\alpha_{r}\right)_{n}}{\left(\beta_{1}\right)_{n} \ldots\left(\beta_{s}\right)_{n} n !} z^{n}. $$ $F$ – series have form $f_n = \sum_{n=0}^{\infty}a_n n! z^n$ whose coefficients $a_n$ satisfy some arithmetic properties. These series converge in the field $\mathbb{Q}_p$ of $p$ – adic numbers and their algebraic extensions $\mathbb{K}_v$. Polyadic number is a series of the form $\sum_{n=0}^{\infty} a_nn!, a_n \in \mathbb{Z}$. Liouville number is a real number x with the property that, for every positive integer n, there exist infinitely many pairs of integers $(p, q)$ with $q > 1$ such that $0 \left| x - \frac{p}{q} \right| \frac{1}{q^n}. $ The polyadic Liouville number $\alpha$ has the property that for any numbers $P, D$ there exists an integer $|A|$ such that for all primes $p \leq P$ the inequality $|\alpha - A|_p A^{-D}. $
Keywords: hypergeometric $F$-series, polyadic Liouville numbers.
@article{CHEB_2021_22_2_a35,
     author = {E. Yu. Yudenkova},
     title = {Values of hypergeometric $F$-series at polyadic {Liouvillea} points},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {536--542},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a35/}
}
TY  - JOUR
AU  - E. Yu. Yudenkova
TI  - Values of hypergeometric $F$-series at polyadic Liouvillea points
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 536
EP  - 542
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a35/
LA  - ru
ID  - CHEB_2021_22_2_a35
ER  - 
%0 Journal Article
%A E. Yu. Yudenkova
%T Values of hypergeometric $F$-series at polyadic Liouvillea points
%J Čebyševskij sbornik
%D 2021
%P 536-542
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a35/
%G ru
%F CHEB_2021_22_2_a35
E. Yu. Yudenkova. Values of hypergeometric $F$-series at polyadic Liouvillea points. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 536-542. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a35/

[1] Galochkin A. I., “Ob algebraicheskoi nezavisimosti znachenii $E$ – funktsii v nekotorykh transtsendentnykh tochkakh”, Vestn. Moskovskogo universiteta. Ser. 1, Matematika, mekhanika, 1970, no. 5, 58–63 | Zbl

[2] Bombieri E., “On $G$ – functions”, Recent Progress in Analytic Number Theory, v. 2, Academic Press, London, 1981, 1–68 | MR

[3] Shidlovskii A. B., Transtsendentnye chisla, Nauka, M., 1987

[4] Chirskii V. G., “Product formula, global relations and polyadic integers”, Russian Journal of Mathematical Physics, 26:2 (2019), 175–184 | DOI | MR

[5] Chirskii V. G., “Ob arifmeticheskikh svoistvakh ryada Eilera”, Vestnik Moskovskogo universiteta. Ser. 1: Matematika, mekhanika, 2015, no. 1, 59–61 | MR | Zbl

[6] Chirskii V. G., “Arifmeticheskie svoistva poliadicheskikh ryadov s periodicheskimi koeffitsientami”, Izvestiya RAN. Seriya matematicheskaya, 81:1 (2017), 215–232 | DOI | Zbl

[7] Chirskii V. G., “Arifmeticheskie svoistva obobschennykh gipergeometricheskikh F-ryadov”, Doklady Akademii nauk, 483:1 (2018), 257–259

[8] Chirskii V. G., “Arithmetic Properties of Generalized Hypergeometric $F$ – Series”, Russian Journal of Mathematical Physics, 27:2 (2020), 175–184 | DOI | MR | Zbl

[9] Chirskii V. G., “Arifmeticheskie svoistva poliadicheskikh ryadov s periodicheskimi koeffitsientami”, Doklady Akademii nauk, 459:6 (2014), 677–679 | DOI | Zbl

[10] Chirskii V. G., “Ob arifmeticheskikh svoistvakh obobschennykh gipergeometricheskikh ryadov s irratsionalnymi parametrami”, Izvestiya RAN. Seriya matematicheskaya, 78:6 (2014), 193–210 | DOI | MR | Zbl

[11] Chirskii V. G., “Otsenki lineinykh form i mnogochlenov ot sovokupnostei poliadicheskikh chisel”, Chebyshevskii sbornik, 12:4 (2011), 129–133 | MR | Zbl

[12] Chirskii V. G., “O globalnykh sootnosheniyakh”, Mat. zametki, 48:2 (1990), 123–127 | MR | Zbl

[13] Chirskii V. G., “Arifmeticheskie svoistva poliadicheskikh ryadov s periodicheskimi koeffitsientami”, Doklady Akademii nauk, matematika, 459:6 (2014), 677–679 | DOI | Zbl

[14] Chirskii V. G., “Arifmeticheskie svoistva poliadicheskikh ryadov s periodicheskimi koeffitsientami”, Izvestiya RAN. Seriya matematicheskaya, 81:2 (2017), 215–232 | DOI | MR | Zbl

[15] Chirskii V. G., “O preobrazovaniyakh periodicheskikh posledovatelnostei”, Chebyshevskii sbornik, 17:3 (2016), 180–185 | DOI

[16] Chirskii V. G., “Arifmeticheskie svoistva poliadicheskikh chisel”, Chebyshevskii sbornik, 16:1 (2015), 254–264 | MR | Zbl

[17] André Y., Séries Gevrey de type arithmétique, Inst. Math., Jussieu

[18] Chirskii V. G., “Arithmetic properties of Generalized Hypergeometric Series”, Russian Journal of Mathematical Physics, 27:2 (2020), 175–184 | DOI | MR | Zbl

[19] Matala–Aho T., Zudilin W., “Euler factorial series and global relations”, J. Number Theory, 186 (2018), 202–210 | DOI | MR | Zbl

[20] Bertrand D., Chirskii V. G., Yebbou Y., “Effective estimates for global relations on Euler-type series”, Ann. Fac. Sci. Toulouse, XIII:2 (2004), 241–260 | DOI | MR | Zbl