Symmetries of Einstein--Weyl manifolds with boundary
Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 510-518.

Voir la notice de l'article provenant de la source Math-Net.Ru

Starting from a real analytic surface $\mathcal{M}$ with a real analytic conformal Cartan connection A. Borówka constructed a minitwistor space of an asymptotically hyperbolic Einstein–Weyl manifold with $\mathcal{M}$ being the boundary. In this article, starting from a symmetry of conformal Cartan connection, we prove that symmetries of conformal Cartan connection on $\mathcal{M}$ can be extended to symmetries of the obtained Einstein–Weyl manifold.
Keywords: einstein–Weyl manifold, symmetries, minitwistor space, conformal Cartan connection.
@article{CHEB_2021_22_2_a32,
     author = {R. Mohseni},
     title = {Symmetries of {Einstein--Weyl} manifolds with boundary},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {510--518},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a32/}
}
TY  - JOUR
AU  - R. Mohseni
TI  - Symmetries of Einstein--Weyl manifolds with boundary
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 510
EP  - 518
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a32/
LA  - en
ID  - CHEB_2021_22_2_a32
ER  - 
%0 Journal Article
%A R. Mohseni
%T Symmetries of Einstein--Weyl manifolds with boundary
%J Čebyševskij sbornik
%D 2021
%P 510-518
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a32/
%G en
%F CHEB_2021_22_2_a32
R. Mohseni. Symmetries of Einstein--Weyl manifolds with boundary. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 510-518. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a32/

[1] A. Borówka, H. Winther, “C-projective symmetries of submanifolds in quaternionic geometry”, Ann. Glob. Anal. Geom., 55:3 (2019), 395 | DOI | MR | Zbl

[2] A. Borówka, “Twistor construction of asymptotically hyperbolic Einstein-Weyl spaces”, Differ. Geom. Appl., 35 (2014), 224–41 | DOI | MR

[3] F. Burstall, D. Calderbank, “Submanifold geometry in generalized flag varieties”, Rendiconti del Circolo Matematico di Palermo, 72 (2014), 13–41 | MR

[4] D. Calderbank, H. Pedersen, Einstein-Weyl geometry, Surveys in Differential Geometry, 6, 1999 | DOI | MR | Zbl

[5] N. J. Hitchin, “Complex manifolds and Einstein's equations”, Twistor Geometry and Non-Linear Systems, Lecture Notes in Mathematics, 970, eds. Doebner H.D., Palev T.D., Springer, Berlin-New York, 1982, 73–99 | DOI | MR

[6] N. Honda, F. Nakata, “Minitwistor spaces, Severi varieties, and Einstein-Weyl structure”, Ann. Glob. Anal. Geom., 39 (2011), 293–323 | DOI | MR | Zbl

[7] P. E. Jones, K. P. Tod, “Minitwistor spaces and Einstein-Weyl spaces”, Class. Quantum Gravity, 2:4 (1985), 565–77 | DOI | MR

[8] F. Nakata, “A construction of Einstein-Weyl spaces via Lebrun-Mason type twistor correspondence”, Communications in Mathematical Physics, 289 (2009), 663–99 | DOI | MR

[9] R. Penrose, “Twistor algebra”, J. Math. Phys., 8 (1967), 345–66 | DOI | MR

[10] R. Penrose, “Nonlinear gravitons and curved twistor theory”, Gen. Relativ. Gravit., 7 (1976), 31–52 | DOI | MR | Zbl