Symmetries of Einstein--Weyl manifolds with boundary
Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 510-518
Voir la notice de l'article provenant de la source Math-Net.Ru
Starting from a real analytic surface $\mathcal{M}$ with a real analytic conformal Cartan connection A. Borówka constructed a minitwistor space of an asymptotically hyperbolic Einstein–Weyl manifold with $\mathcal{M}$ being the boundary. In this article, starting from a symmetry of conformal Cartan connection, we prove that symmetries of conformal Cartan connection on $\mathcal{M}$ can be extended to symmetries of the obtained Einstein–Weyl manifold.
Keywords:
einstein–Weyl manifold, symmetries, minitwistor space, conformal Cartan connection.
@article{CHEB_2021_22_2_a32,
author = {R. Mohseni},
title = {Symmetries of {Einstein--Weyl} manifolds with boundary},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {510--518},
publisher = {mathdoc},
volume = {22},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a32/}
}
R. Mohseni. Symmetries of Einstein--Weyl manifolds with boundary. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 510-518. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a32/