Symmetries of Einstein--Weyl manifolds with boundary
Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 510-518

Voir la notice de l'article provenant de la source Math-Net.Ru

Starting from a real analytic surface $\mathcal{M}$ with a real analytic conformal Cartan connection A. Borówka constructed a minitwistor space of an asymptotically hyperbolic Einstein–Weyl manifold with $\mathcal{M}$ being the boundary. In this article, starting from a symmetry of conformal Cartan connection, we prove that symmetries of conformal Cartan connection on $\mathcal{M}$ can be extended to symmetries of the obtained Einstein–Weyl manifold.
Keywords: einstein–Weyl manifold, symmetries, minitwistor space, conformal Cartan connection.
@article{CHEB_2021_22_2_a32,
     author = {R. Mohseni},
     title = {Symmetries of {Einstein--Weyl} manifolds with boundary},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {510--518},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a32/}
}
TY  - JOUR
AU  - R. Mohseni
TI  - Symmetries of Einstein--Weyl manifolds with boundary
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 510
EP  - 518
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a32/
LA  - en
ID  - CHEB_2021_22_2_a32
ER  - 
%0 Journal Article
%A R. Mohseni
%T Symmetries of Einstein--Weyl manifolds with boundary
%J Čebyševskij sbornik
%D 2021
%P 510-518
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a32/
%G en
%F CHEB_2021_22_2_a32
R. Mohseni. Symmetries of Einstein--Weyl manifolds with boundary. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 510-518. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a32/