On exremality of affine image of topological product of some varieties
Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 490-500.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the theory of Diophantine Approximations one considers a question on approximation of Real Numbers by rational fractions with one and the same denominators. Among intensively studied questions of this theory a special place occupy Metric questions. Here such questions of the theory are considered which take place for almost all real numbers from given interval. For the first time similar questions have been studied by Khintchine for approximation of independent quantities. It had been investigated by him conditions at which for almost all real numbers specified accuracy of approximation is reached. Very important in the technical plan Khintchince's transference principle allows us to connect a simultaneous approximations of dependent quantities with approximations of linear forms with integral coefficients. In 1932 Mahler K. has entered classification of transcendental numbers into consideration. He showed that almost all transcendental numbers are $S$ -numbers. Moreover, Mahler had proved an existence of a constant $ \gamma> 0$ such that for almost all $ \omega $ $$ |P (\omega) |> h ^ {-n\gamma}, $$ for all polynomials $P $ of degree no more $n $ and height $h> h _ {0} (\omega, n, \gamma) $. Mahler showed that it is possible to take $$ \gamma=4 +\varepsilon. $$ In the same work Mahler made an assumption that it is possible to take $ \gamma=1 +\varepsilon $ for almost all real numbers. This hypothesis was proved by Sprindzhuk V. G by a method of essential and non-essential domains. Simultaneously, Sprindzhuk V. G. advanced some hypotheses generalising and improving Mahler's results. Further these investigations of Sprindzuk led to the development of a new direction in the theory of Diophantine Approximations – to the research of extremality of manifolds. In the present article we develop a new approach to these questions and offer a new proof for extremality of algebraic varieties. This method allows to establish extremality of affine image of topological product of some varieties. Considering one particular case, we prove that the extremality for these varieties is possible to deduct from theorems on the convergence exponent of a special integral of Terry's problem, using E.I. Kovalevskaya's lemma. Further, we derive from the getting result particular case of the Sprindzuk's hypothesis on extremality of varieties, induced by monomials of a polynomial in two variables.
Keywords: Diophantine approximation, extremal manifold, convergence exponent, special integral, Terry's problem.
@article{CHEB_2021_22_2_a30,
     author = {I. Sh. Jabbarov and L. G. Ismailova},
     title = {On exremality of affine image of topological product of some varieties},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {490--500},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a30/}
}
TY  - JOUR
AU  - I. Sh. Jabbarov
AU  - L. G. Ismailova
TI  - On exremality of affine image of topological product of some varieties
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 490
EP  - 500
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a30/
LA  - ru
ID  - CHEB_2021_22_2_a30
ER  - 
%0 Journal Article
%A I. Sh. Jabbarov
%A L. G. Ismailova
%T On exremality of affine image of topological product of some varieties
%J Čebyševskij sbornik
%D 2021
%P 490-500
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a30/
%G ru
%F CHEB_2021_22_2_a30
I. Sh. Jabbarov; L. G. Ismailova. On exremality of affine image of topological product of some varieties. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 490-500. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a30/

[1] Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., Teoriya kratnykh trigonometricheskikh summ, Nauka, M., 1987, 368 pp. | MR

[2] Bernik V. I., Kovalevskaya E. I., “Ekstremalnoe svoistvo nekotorykh poverkhnostei v n-mernom evklidovom prostranstve”, Matem. zametki, 15:2 (1974), 247–254 | Zbl

[3] Kassele Dzh. V. S., Vvedenie v teoriyu diofantovykh priblizhenii, IIL, M., 1961, 212 pp.

[4] Dzhabbarov I. Sh., “O pokazatele skhodimosti osobogo integrala mnogomernoi problemy Terri”, Chebyshevskii Sbornik, 14:2 (2013), 74–103

[5] Dzhabbarov I. Sh., “O mnogomernoi probleme Terri dlya kubcheskogo mnogochlena”, Matematicheskie zametki, 107:5 (2020), 657–673 (to appear) | DOI | MR | Zbl

[6] Kovalevskaya E. I., “Sovmestno ekstremalnye mnogoobraziya”, Matem. zametki, 41:1 (1987), 3–8 | Zbl

[7] Khintschine A., “Uber eine Klasse linearer Diophantischer Approximationen”, Circolo mat. Palermo, 50 (1926), 175–195 | MR

[8] Mahler K., “Zur Approximation der Exponentialfunktionen und des Logarithmus. I, II”, J. reine und angew. Math., 166 (1932), 118–150 | DOI | MR

[9] Mahler K., “Uber das Mass der Menge aller S-Zahlen”, Math. Ann., 106 (1932), 131–139 | DOI | MR | Zbl

[10] Sprindzhuk V. G., Metricheskaya teoriya diofantovykh priblizhenii, Nauka, M., 1977, 143 pp. | MR

[11] Sprindzhuk V. G., “Dokazatelstvo gipotezy Malera o mere mnozhestva S-chisel”, Izv. AN SSSR. Ser. matem., 29:2 (1965), 379–436 | MR | Zbl

[12] Kleinbock D. Y., Margulis G. A., “Flows on homogeneous spaces and Diophantine approximation on manifolds”, Ann. Math., 148 (1998), 339–360 | DOI | MR | Zbl

[13] Shilov G. E., Matematicheskii analiz (funktsii neskolkikh veschestvennykh peremennykh), Nauka, M., 1972 | MR