Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_2_a3, author = {E. Deza and B. Mhanna}, title = {Quasi-metrics on graphs}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {48--75}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a3/} }
E. Deza; B. Mhanna. Quasi-metrics on graphs. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 48-75. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a3/
[1] Deza M.M., Deza E.I., Dyutur Sikirich M., “Poliedralnye konstruktsii, svyazannye s kvazi-metrikami”, Chebyshevskii sbornik, 16:2 (2015), 79–92 | MR | Zbl
[2] Deza E.I., Mkhanna B., “O spetsialnykh svoistvakh nekotorykh kvazimetrik”, Chebyshevskii sbornik, 21:1 (2020), 145–164 | DOI | MR | Zbl
[3] Potapov V.N., Teoriya informatsii. Kodirovanie diskretnykh veroyatnostnykh istochnikov, NGU, Novosibirsk, 1999
[4] Chebotarev P.Yu., Agaev R.P., Matrichnaya teorema o lesakh i laplasovskie matritsy orgrafov, LAP LAMBERT Academic publishing, M., 2011
[5] Shennon K., Raboty po teorii informatsii i kibernetike, IL, M., 1963
[6] Catral M., Neumann M., Xu H., “Proximity in group inverses of M-matrices and inverses of diagonally dominant M-matrices”, Linear Algebra and its Applications, 409 (2005), 32–50 | DOI | MR | Zbl
[7] Chebotarev P., “Spanning forest and the Golden ratio”, Discrete Applied Mathematics, 156 (2008), 813–821 | DOI | MR | Zbl
[8] Chebotarev P., “Studying new classes of graph metrics”, Proceedings of the SEE Conference "Geometric Science of Information", GSI-2013, Lecture Notes in Computer Science, 8085, eds. F. Nielsen, F. Barbaresco, 2013, 207–214 | DOI | MR | Zbl
[9] Chebotarev P., Agaev R., “Forest matrices around the Laplacian matrix”, Linear Algebra and its Applications, 356 (2002), 253–274 | DOI | MR | Zbl
[10] Chebotarev P., Deza E., “Hitting time quasi-metric and its forest representation”, Optimization Letters, 14 (2020), 291–307 | DOI | MR | Zbl
[11] Chebotarev P.Y., Shamis E.V., “On proximity measures for graph vertices”, Automation and Remote Control, 59 (1998), 1443–1459 | MR | Zbl
[12] Deza E., Deza M., Dutour Sikirić M., Generalizations of Finite Metrics and Cuts, World Scientific, 2016 | MR | Zbl
[13] Deza M., Deza E., “Cones of partial metrics”, Contributions to Discrete Mathematics, 6 (2011), 26–47 | MR | Zbl
[14] Deza M. M., Deza E., Encyclopedia of Distances, Berlin-Heidelberg, Springer, 2016 | MR | Zbl
[15] Deza M., Deza E., Vidali J., “Cones of weighted and partial metrics”, Advances in Algebraic Structures, Proceedings of the Internat. Conference on Algebra 2010, 2012, 177–197 | MR | Zbl
[16] Kirkland S.J., Neumann M., Group inverses of M-matrices and their applications, CRC Press, 2012 | MR
[17] Klein D., Zhu H., “Distances and volumina for graphs”, Journal of Mathematical Chemistry, 23 (1998), 179–195 | DOI | MR | Zbl
[18] Leighton T., Rivest R.L., The Markov chain tree theorem, Computer Science Technical Report MIT/LCS/TM-249, Laboratory of Computer Science, MIT, Cambridge, Mass., 1983
[19] Leighton T., Rivest R.L., “Estimating a probability using finite memory”, IEEE Transactions on Information Theory, 32 (1986), 733–742 | DOI | Zbl
[20] Wilson W., “On quasi-metric spaces”, American Journal of Mathematics, 53 (1931), 675–684 | DOI | MR | Zbl