Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_2_a29, author = {Ke Gong}, title = {Note on a theorem of {Davenport}}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {484--489}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a29/} }
Ke Gong. Note on a theorem of Davenport. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 484-489. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a29/
[1] J. W. S. Cassels, An Introduction to the Geometry of Numbers, Springer-Verlag, Berlin, 1959 | MR | Zbl
[2] H. Davenport, “On a theorem of Furtwängler”, J. London Math. Soc., 30 (1955), 186–195 | DOI | MR | Zbl
[3] P. M. Gruber, C. G. Lekkerkerker, Geometry of Numbers, Second Edition, North-Holland, Amsterdam, 1987 | MR | Zbl
[4] H. Iwaniec, “On the problem of Jacobsthal”, Demonstratio Math., 11 (1978), 225–231 | DOI | MR | Zbl
[5] C. G. Lekkerkerker, “A theorem on the distribution of lattices”, Indag. Math., 23 (1961), 197–210 | DOI | MR
[6] C. G. Lekkerkerker, “Homogeneous simultaneous approximations”, Indag. Math., 25 (1963), 578–586 | DOI | MR
[7] G. Martin, “The least prime primitive root and the shifted sieve”, Acta Arith., 80 (1997), 277–288 | DOI | MR | Zbl
[8] K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin, 1957 | MR | Zbl
[9] Selected Papers of Wang Yuan, World Scientific, Hackensack, NJ, 2005, 180–184 | DOI | MR | MR | Zbl
[10] Z. H. Yang, “An improvement for a theorem of Davenport”, J. China Univ. Sci. Tech., 15 (1985), 1–5 | MR | Zbl
[11] Q. Yao, “An approximation theorem for an $n$-dimensional lattice”, J. Shanghai Univ. Sci. Tech., 8 (1985), 12–15 (in Chinese) | MR
[12] Y. C. Zhu, “A note on Lekkerkerker's theorem concerning lattices”, Acta Math. Sinica, 23 (1980), 720–729 | MR | Zbl
[13] Y. C. Zhu, An Introduction to the Geometry of Numbers, University of Science and Technology of China Press, Hefei, 2019 (in Chinese)