Note on a theorem of Davenport
Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 484-489.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Lambda$ be a $n$-dimensional lattice, and $c_1,\ldots,c_{n-1}$ be any $n-1$ vectors in $n$-dimensional real Euclidean space. We show that there exists a basis $\alpha_1,\ldots,\alpha_n$ of $\mathsf\Lambda$ such that $$ |\alpha_i-Nc_i|=O(\log^2N),\leqslant (1\leqslant i\leqslant n-1) $$ holds for any real number $N\ge 2$, where the constant implied by the $O$ symbol depends only on $\Lambda$ and $c_1,\ldots,c_{n-1}$.
Keywords: Lattice, basis, approximation, combinatorial sieve.
@article{CHEB_2021_22_2_a29,
     author = {Ke Gong},
     title = {Note on a theorem of {Davenport}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {484--489},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a29/}
}
TY  - JOUR
AU  - Ke Gong
TI  - Note on a theorem of Davenport
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 484
EP  - 489
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a29/
LA  - en
ID  - CHEB_2021_22_2_a29
ER  - 
%0 Journal Article
%A Ke Gong
%T Note on a theorem of Davenport
%J Čebyševskij sbornik
%D 2021
%P 484-489
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a29/
%G en
%F CHEB_2021_22_2_a29
Ke Gong. Note on a theorem of Davenport. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 484-489. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a29/

[1] J. W. S. Cassels, An Introduction to the Geometry of Numbers, Springer-Verlag, Berlin, 1959 | MR | Zbl

[2] H. Davenport, “On a theorem of Furtwängler”, J. London Math. Soc., 30 (1955), 186–195 | DOI | MR | Zbl

[3] P. M. Gruber, C. G. Lekkerkerker, Geometry of Numbers, Second Edition, North-Holland, Amsterdam, 1987 | MR | Zbl

[4] H. Iwaniec, “On the problem of Jacobsthal”, Demonstratio Math., 11 (1978), 225–231 | DOI | MR | Zbl

[5] C. G. Lekkerkerker, “A theorem on the distribution of lattices”, Indag. Math., 23 (1961), 197–210 | DOI | MR

[6] C. G. Lekkerkerker, “Homogeneous simultaneous approximations”, Indag. Math., 25 (1963), 578–586 | DOI | MR

[7] G. Martin, “The least prime primitive root and the shifted sieve”, Acta Arith., 80 (1997), 277–288 | DOI | MR | Zbl

[8] K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin, 1957 | MR | Zbl

[9] Selected Papers of Wang Yuan, World Scientific, Hackensack, NJ, 2005, 180–184 | DOI | MR | MR | Zbl

[10] Z. H. Yang, “An improvement for a theorem of Davenport”, J. China Univ. Sci. Tech., 15 (1985), 1–5 | MR | Zbl

[11] Q. Yao, “An approximation theorem for an $n$-dimensional lattice”, J. Shanghai Univ. Sci. Tech., 8 (1985), 12–15 (in Chinese) | MR

[12] Y. C. Zhu, “A note on Lekkerkerker's theorem concerning lattices”, Acta Math. Sinica, 23 (1980), 720–729 | MR | Zbl

[13] Y. C. Zhu, An Introduction to the Geometry of Numbers, University of Science and Technology of China Press, Hefei, 2019 (in Chinese)