Note on a theorem of Davenport
Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 484-489

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Lambda$ be a $n$-dimensional lattice, and $c_1,\ldots,c_{n-1}$ be any $n-1$ vectors in $n$-dimensional real Euclidean space. We show that there exists a basis $\alpha_1,\ldots,\alpha_n$ of $\mathsf\Lambda$ such that $$ |\alpha_i-Nc_i|=O(\log^2N),\leqslant (1\leqslant i\leqslant n-1) $$ holds for any real number $N\ge 2$, where the constant implied by the $O$ symbol depends only on $\Lambda$ and $c_1,\ldots,c_{n-1}$.
Keywords: Lattice, basis, approximation, combinatorial sieve.
@article{CHEB_2021_22_2_a29,
     author = {Ke Gong},
     title = {Note on a theorem of {Davenport}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {484--489},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a29/}
}
TY  - JOUR
AU  - Ke Gong
TI  - Note on a theorem of Davenport
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 484
EP  - 489
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a29/
LA  - en
ID  - CHEB_2021_22_2_a29
ER  - 
%0 Journal Article
%A Ke Gong
%T Note on a theorem of Davenport
%J Čebyševskij sbornik
%D 2021
%P 484-489
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a29/
%G en
%F CHEB_2021_22_2_a29
Ke Gong. Note on a theorem of Davenport. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 484-489. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a29/