From the history of the concept of structural stability
Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 417-436.

Voir la notice de l'article provenant de la source Math-Net.Ru

Aim. The aim of the work is to study the history of ideas about coarseness (structural stability), which is not only one of the most important concepts of the theory of nonlinear systems, but lies at the heart of our worldview. To nowаdays, structural stability has been considered in historical terms only fragmentarily (mainly in connection with the Andronov school) and has not been the subject of a consistent historical study. Method. The study is based on an analysis of original works, historical and scientific literature with the involvement of the memories of participants in the events described. Results. In Andronov’s school, in the context of applied problems, two-dimensional systems for which structural stability is a typical property have been exhaustively studied. Since the late 1950s there is a shift in research on structural stability in the context of applied problems towards the theory of dynamical systems. M. Peixoto studied structural stability on closed two-dimensional manifolds and proved the density of such systems. S. Smale hypothesized the existence of structurally stable systems in the multidimensional case ($n\geqslant3$) . Such systems exist (Morse-Smale systems), but he himself established their atypicality, they do not constitute a dense set. Multidimensional systems are characterized by complex behavior; an example of such a system (Smale's horseshoe) was built. The study of systems with complex behavior stimulated the development of hyperbolic theory. Discussion. Structural stability was an important factor in the discovery of the complex behavior of dynamical systems already in the three-dimensional case; it continues to play a significant role in the modern theory of dynamical systems. Structural stability is of general scientific importance, played a key role in the construction of catastrophe theory, it went beyond the framework of the theory of dynamical systems and mathematics itself, penetrates into other areas of science, including the humanitarian sphere.
Keywords: dynamical system, coarseness, structural stability, topological equivalence, typicality, transversality, dense set.
@article{CHEB_2021_22_2_a25,
     author = {R. R. Mukhin},
     title = {From the history of the concept of structural stability},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {417--436},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a25/}
}
TY  - JOUR
AU  - R. R. Mukhin
TI  - From the history of the concept of structural stability
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 417
EP  - 436
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a25/
LA  - ru
ID  - CHEB_2021_22_2_a25
ER  - 
%0 Journal Article
%A R. R. Mukhin
%T From the history of the concept of structural stability
%J Čebyševskij sbornik
%D 2021
%P 417-436
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a25/
%G ru
%F CHEB_2021_22_2_a25
R. R. Mukhin. From the history of the concept of structural stability. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 417-436. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a25/

[1] Tom R., Strukturnaya ustoichivost i morfogenez, Logos, M., 2002, 280 pp.

[2] Galilei G., Probirnykh del master, Nauka, M., 1987, 272 pp. | MR

[3] Arnold V.I., Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, RKhD, Izhevsk, 2000, 400 pp.

[4] Laplas P.S., Opyt filosofii teorii veroyatnostei, M., 1908, 206 pp.

[5] Molodshii V.N., “O. Koshi i revolyutsiya v matematicheskom analize pervoi chetverti XIX v.”, Istor.-matem. issled., 1978, no. 23, 32–55 | MR | Zbl

[6] Liouville J., “Remarques nouvelles sur l'équation de Riccati”, J. Math. Pures et Appl., 1841, 1–13

[7] Bour J., “Sur l'integration des équations différentielles de la Mécanique Analytic”, J. Math. Pure et Appl., 20 (1855), 185–200

[8] Liouville J., “Note à l'occasion du memoire précident de M. Edmond Bour”, J. Math. Pure et Appl., 20 (1855), 201–202

[9] Poincaré H., “Memoire sur les courbes définies par une équations differentielle”, J. Math. Rure et Appl. Sér. 3, 7 (1881), 375–422; 8 (1882), 251–296; J. Math. Pure et Appl. Sér. 4, 1 (1885), 167–244; 2 (1886), 151–217

[10] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, OGIZ, M.–L., 1947, 392 pp.

[11] Bohl P., “Über Differentialungleichugen”, J. für reine und angewandte Math., 144 (1913), 284–313 | MR

[12] Myshkis A.D., Rabinovich I.M., Matematik Pirs Bol, Izd-vo «Zinatne», Riga, 1965, 100 pp. | MR

[13] Anosov D.V., “Grubye sistemy”, Trudy MIAN SSSR, 169, 1985, 59–93

[14] Andronov A.A., Pontryagin L.S., “Grubye sistemy”, DAN SSSR, 14:5 (1937), 247–252 | MR

[15] Puankare A., “Buduschee matematiki”, Vestn. opyt. fiziki i elem. matematiki, 1908, no. 47, 5–476; No 474, 405–410; 425-429; No 477, 473–483

[16] Kneser H., “Reguläre Karvenscharen auf den Ringflächen”, Math. Ann., 91 (1924), 135–154 | DOI | MR

[17] Peixoto M. M., “Acceptance speech for the TWAS 1986 award in mathematics”, The future of science in China and the third world, World Sci., Singapore, 1989, 600–614

[18] Andronov A.A., “Les cycles limites de Poincaré et la théorie des oscillations autoentretenues”, Comp. Rend., 189:15 (1929), 559–561

[19] Boiko E.S., Aleksandr Aleksandrovich Andronov, Nauka, M., 1991, 256 pp.

[20] Nemytskii V.V., “Moskovskii topologicheskii kruzhok za 10 let”, UMN, 1936, no. 2, 279–285

[21] Andronov A.A., “Matematicheskie problemy teorii avtokolebanii”, I Vsesoyuzn. konf. po kolebaniyam, v. I, Gostekhteorizdat, M., 1933, 32–71

[22] Andronov A.A., Khaikin S.E., Teoriya kolebanii, ONTI, M.-L., 1937, 519 pp.

[23] Minorsky N., Introduction to Nonlinear Mechanics, J.W. Edvards, Ann-Arbor, 1958, 476 pp. | MR

[24] Andronov A.A., Khaikin S.E., Theory of Oscillations, Princeton Univ. Press, Princeton, NJ, 1949, 358 pp. | MR

[25] Aubin D., Cultural History of Catastrophe and Chaos, Université de Princeton, Département d'Histoire, Princeton, NJ, 1998, 782 pp. | MR

[26] Lefschetz S., Nonlinear Differential Equations and Nonlinear Oscillations, August 15, 1946–Sept. 30, 1959. Final Report, US Office of Naval Research | MR

[27] Griffiths P., Spencer D., Whitehead G., Solomon Lefschetz. A biographical memoir, National Acad. Sci., Washington D.C., 1992, 313 pp.

[28] De Baggis G.F., “Dynamical systems with stable structure”, Contribution to the Theory of Nonlinear Oscillations, v. 2, ed. Lefschetz S., 1952, 37–59 | MR | Zbl

[29] Dahan Dalmedico A., “La renaissance des systémes dynamiques aux Etats-Unis aprés la deuxieme guerre mondiale”, Suppl. Rendiconti dei circolo math. Palermo. Ser. II, 34 (1994), 133–166 | MR | Zbl

[30] Arnold V.I., Teoriya katastrof, Nauka, M., 1990, 128 pp. | MR

[31] Whiney H., “Singularities of mappings of Euclidean spaces”, Ann. Math., 62 (1955), 374–410 | DOI | MR

[32] Kolmogorov A.N., “Obschaya teoriya dinamicheskikh sistem i klassicheskaya mekhanika”, Proc. Intern. Congr. Math., v. 1, Amsterdam, 1954, 315–333; А.Н.Колмогоров, Математика и механика, Наука, М., 1985, 316–332

[33] Hunt B., Kaloshin V., “Prevalence”, Handbook of Dynamical Systems, v. 3, eds. H. Broer, F. Takens, B. Hasselblatt, Elseiver, Amsterdam, 2010, 43–88 | MR

[34] Anosov D.V., “Transversalnost”, Mat. entsikloped., v. 5, Sov. Entsiklopediya, M., 1985, 415–416

[35] Thom R., “Quelques proprieties globales des varites differentiables”, Comm. Math. Helv., 28 (1954), 17–86 | DOI | MR | Zbl

[36] Thom R., “Un lemme sur les applications differentiables”, Boletin de la Sociedad Math. Mexicana. Ser. 2, 1 (1956), 59–71 | MR | Zbl

[37] Tom R., Levin G., “Osobennosti differentsiruemykh otobrazhenii”, Osobennosti differentsiruemykh otobrazhenii, ed. V.I. Arnold, Mir, M., 1968, 8–101

[38] Peixoto M.M., “Some Recollections of the Early Work of Steve Smale”, From Topology to Computation, Proceedings of the Smalefest, eds. M.W. Hirsh, J.E. Marsden, M. Shub, Springer-Verlag, N.Y., 1993, 73–75 | DOI | MR

[39] Comp. Appl. Math., 20:1-2 (2001), 3–9 | MR | Zbl

[40] Lefschetz S., Differential equations: geometric theory, Interscience Publshers, N.Y.-L., 1957, 400 pp. | MR | Zbl

[41] Peixoto M., “On structural stability”, Ann. Math., 69:1 (1959), 199–222 | DOI | MR | Zbl

[42] Anosov D.V., “O razvitii teorii dinamicheskikh sistem za poslednyuyu chetvert veka”, Studencheskie chteniya MK NMU, 1, MTsNMO, M., 2000, 74–192

[43] Smale S., “On how I can get started in dynamical systems”, The mathematics of time, Springer Verlag, N.Y., 1980, 147–151 | DOI | MR

[44] Peixoto M., “Structural stability on two-dimensional manifolds”, Topology, 1:2 (1962), 101–120 | DOI | MR | Zbl

[45] Maier A.G., “Gruboe preobrazovanie okruzhnosti v okruzhnost”, Uchen. zapiski Gorkov. un-ta, 1939, no. 12, 215–229

[46] Pliss V.A., “O grubosti differentsialnykh uravnenii, zadannykh na tore”, Vest. LGU, 1960, no. 13(3), 15–23 | Zbl

[47] Arnold V.I., “Malye znamenateli. I. Otobrazhenie okruzhnosti na samu sebya”, Izv. AN SSSR. Ser. Matematika, 25:1 (1961), 21–86

[48] Palis Zh., Di Melu V., Geometricheskaya teoriya dinamicheskikh sistem, Mir, M., 1986, 301 pp.

[49] Peixoto M., “Structural stability on two-dimensional manifolds — a further remarks”, Topology, 2:2 (1963), 179–180 | DOI | MR | Zbl

[50] Nemytskii V.V., Stepanov V.V., Kachestvennaya teoriya differentsialnykh uravnenii, GITTL, M.–L., 1949, 552 pp. | MR

[51] Smale S., “On gradient dynamical systems”, Ann. Math., 74 (1961), 199–206 | DOI | MR | Zbl

[52] Smale S., “A structurally stable differential homomorphysm with an infinite number of periodic points”, Trudy Mezhd. simpoz. po nelin. kolebaniyam (Kiev, 1961), AN USSR, Kiev, 1963, 365–366 | MR

[53] Smale S., “Structurally stable systems are not dense”, Am. J. Math., 73 (1966), 747–817 ; Matematika, 11:4 (1967), 107–112 | MR

[54] Smale S., “Finding a Horseshoe on the Beaches of Rio”, Chaos Avant-Garde, World Sci, Singapore, 2000, 7–22 | MR | Zbl

[55] Cartwright M., Littlewood J.E., “On non-linear differential equations of the second order: I. The equation $y-k(1-y^2)y+y=b\lambda kcos(\lambda t+\alpha)$, k large”, J. London Math. Soc. Part 3, 20:79 (1945), 180–189 | DOI | MR | Zbl

[56] Cartwright M., Littlewood J.E., “On non-linear differential equations of the second order: II. The equation $y+kf(y,y)+g(y,k)=p(t)=p_1(t)+kp_2(t); k>0, f(y)\ge1$”, Ann. Math., 48:2 (1947), 472–494 ; 50 (1949), 504–505 | DOI | MR | Zbl | DOI | MR | Zbl

[57] Littlewood J.E., “On non-linear differential equations of the second order: III. The equation $y-k(1-y^2)y+y=b\mu kcos(\mu t+\alpha)$ for large k, and its generalization”, Acta Math., 97:3-4 (1957), 267–308 | DOI | MR | Zbl

[58] Littlwood J.E., “On the non-linear differential equations of the second order: IV. The general equation $y+kf(y)y+g(y)=bkp(\varphi), \varphi=t+\alpha$”, Acta Math., 98:1-2 (1957), 1–110 | DOI | MR

[59] Littlwood J.E., “On the number of stable periods of a differential equation of the Van der Pol type”, JRE Trans. Circuit Theory, 7:4 (1960), 535–542 | DOI | MR

[60] Levinson N., “A second order differential equation with singular solutions”, Ann. Math., 50:1 (1949), 126–153 | DOI | MR

[61] Smale S., “Structurally stable systems are not dense”, Am. J. Math., 73 (1966), 747–817 | MR

[62] Anosov D.V., “Dinamicheskie sistemy v 60-e gody: giperbolicheskaya revolyutsiya”, Matematicheskie sobytiya KhKh veka, Fazis, M., 2003, 1–18

[63] Anosov D.V., “Grubost geodezicheskikh potokov na kompaktnykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, DAN SSSR, 145:4 (1962), 707–709 | Zbl

[64] Anosov D.V., “Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, Trudy MIAN, Nauka, M., 1967, 3–209

[65] Ilyashenko Yu.S., “Attraktory dinamicheskikh sistem i filosofiya obschego polozheniya”, Matem. prosv., 2008, no. 12, 13–22

[66] Ruelle D., Takens F., “On the Nature of Turbulence”, Comm. Math. Phys., 20 (1971), 167–192 ; Strannye attraktory, Mir, M., 1981, 117–151 | DOI | MR | Zbl

[67] Arnold V.I., “Teoriya katastrof”, Sovr. problemy matematiki. Fund. napravleniya, 5, VINITI, M., 1986, 219–277

[68] Hadamard J., Lectures on Cauchy's Problem in Linear Differential Equations, New Haven, 1923, 316 pp. | MR

[69] Mira C., “Some historical aspects of nonlinear dynamics: possible trends for the future”, Int. J. Bifurcation and Chaos, 7:9 (1997), 2145–2173 | DOI | MR | Zbl

[70] Tikhonov A.N., “Ob ustoichivosti obratnykh zadach”, DAN SSSR, 39:5 (1943), 195–198

[71] Thom R., “Topological models in biology”, Topology, 8:3 (1969), 313–335 | DOI | MR | Zbl

[72] Thom R., “Catastrophe theory: Its present state and future perspectives”, Dynamical systems, Springer-Verlag, Berlin, 1974, 366–372 | MR

[73] Aubin D., “From catastrophe to chaos: the modelling practices of applied topologists”, Changing images of math., eds. U. Bottazzini, A. Dahan Dalmedico, Routledge, L.-N.Y., 2001, 255–279 | MR

[74] Aleskerov F.T. i dr., Vliyanie i strukturnaya ustoichivost v rossiiskom parlamente (1905-1917 i 1993-2005 gg.), Fizmatlit, M., 2007, 309 pp.