Regression differentiation and regression integration of finite series
Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 27-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

Data analysis is a complex and multi-dimensional concept. It is explained by both the objective complexity of the data itself and the subjective nature of the expert analyzing them. Therefore, adequate formalization of this requires a completely new apparatus, on the one hand, capable of overcoming the objective complexity of data (irregularity and inaccuracy), and, on the other hand, the vague nature of expert judgment. The development of Discrete Mathematical Analysis (DMA) is an important step in this direction. DMA is highly expert oriented and occupies an intermediate position in data analysis between strict mathematical methods (statistical analysis, TFA, etc.) and soft combinatorial methods (simulation modeling, neural networks, etc.). This paper proposes new mathematical constructions of regression derivatives and regression integrals for discrete time series defined in general on an irregular grid. An important role in their study is played by the recently created by the authors projection method for solving systems of linear algebraic equations described at the end of this paper. The obtained constructions of regression derivatives and regression integrals have a hierarchical character in the spirit of wavelet and fractal analysis. The results of this work define another direction in further studies, namely, the propagation of regression differentiation and regression integration in finite mathematics under scenarios of the classical one.
Keywords: discrete mathematical analysis, regression differentiation, regression integration, operator kernel, functional non-integrable series.
@article{CHEB_2021_22_2_a2,
     author = {S. M. Agayan and Sh. R. Bogoutdinov and M. N. Dobrovolskiy and O. V. Ivanchenko and D. A. Kamaev},
     title = {Regression differentiation and regression integration of finite series},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {27--47},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a2/}
}
TY  - JOUR
AU  - S. M. Agayan
AU  - Sh. R. Bogoutdinov
AU  - M. N. Dobrovolskiy
AU  - O. V. Ivanchenko
AU  - D. A. Kamaev
TI  - Regression differentiation and regression integration of finite series
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 27
EP  - 47
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a2/
LA  - ru
ID  - CHEB_2021_22_2_a2
ER  - 
%0 Journal Article
%A S. M. Agayan
%A Sh. R. Bogoutdinov
%A M. N. Dobrovolskiy
%A O. V. Ivanchenko
%A D. A. Kamaev
%T Regression differentiation and regression integration of finite series
%J Čebyševskij sbornik
%D 2021
%P 27-47
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a2/
%G ru
%F CHEB_2021_22_2_a2
S. M. Agayan; Sh. R. Bogoutdinov; M. N. Dobrovolskiy; O. V. Ivanchenko; D. A. Kamaev. Regression differentiation and regression integration of finite series. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 27-47. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a2/

[1] Mikhailov V., Galdeano A., Diament M., Gvishiani A., Agayan S., Bogoutdinov Sh., Graeva E., Sailhac P., “Application of artificial intelligence for Euler solutions clustering”, Geophysics, 68:1 (2003), 168–180 | DOI

[2] Zlotnicki J., LeMouel J.-L., Gvishiani A., Agayan S., Mikhailov V., Bogoutdinov Sh., “Automatic fuzzy-logic recognition of anomalous activity on long geophysical records. Application to electric signals associated with the volcanic activity of la Fournaise volcano (Réunion Island)”, Earth and Planetary Science Letters, 234 (2005), 261–278 | DOI

[3] Soloviev A., Chulliat A., Bogoutdinov S., Gvishiani A., Agayan S., Peltier A., Heumez B., “Automated recognition of spikes in 1 Hz data recorded at the Easter Island magnetic observatory”, Earth Planets Space, 64:9 (2012), 743–752 | DOI

[4] Gvishiani A.D., Agayan S.M., Bogoutdinov Sh.R., Graeva E.M., Zlotnicki J., Bonnin J., “Recognition of anomalies from time series by fuzzy logic methods”, Russian Journal of Earth Sciences, 10 (2008), ES1001 | DOI

[5] Agayan S., Bogoutdinov Sh., Soloviev A., Sidorov R., “The Study of Time Series Using the DMA Methods and Geophysical Applications”, Data Science Journal, 2016, 1–21 | DOI

[6] S.M. Agayan, Sh.R. Bogoutdinov, R.I. Krasnoperov, “Short introduction into DMA”, Russian Journal of Earth Sciences, 18:2 (2018) | DOI

[7] S.M. Agayan, Sh.R. Bogoutdinov, D.A. Kamaev, M.N. Dobrovolskii, “Stokhasticheskie trendy na osnove nechetkoi matematiki”, Chebyshevskii sbornik, 20:3 (2019), 92–106 | DOI | MR | Zbl

[8] A.N. Kolmogorov, S.V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1980, 543 pp. | MR

[9] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v. II, Nauka, M., 1970, 800 pp.

[10] F.R. Gantmakher, M.G. Krein, Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, Gostekhizdat, M.–L., 1950, 360 pp. | MR

[11] Abaffi I., Spedikato E., Matematicheskie metody dlya lineinykh i nelineinykh uravnenii: proektsionnye ABS-algoritmy, Mir, M., 1996, 270 pp.

[12] S.M. Agayan, Sh.R. Bogoutdinov, A.A. Bulychev, A.A. Solovev, I.A. Firsov, “Proektsionnyi metod resheniya sistem lineinykh uravnenii i ego primenenie v gravimetrii”, Doklady akademii nauk. Nauki o Zemle, 493:1 (2020), 58–62 | DOI

[13] Agayan S. M., Solovev A. A., Bogoutdinov Sh. R., Nikolova Yu. I., “Regressionnye proizvodnye i ikh primenenie v izuchenii geomagnitnykh dzherkov”, Geomagnetizm i aeronomiya, 59:3 (2019), 383–392 | DOI

[14] Mallat S., A wavelet tour of signal processing, Academic Press, 2009, 832 pp. | DOI | MR | Zbl

[15] B. Mandelbrot, The fractal geometry of nature, W.H. Freeman and company, 1982, 480 pp. | MR | Zbl

[16] Feder E., Fraktaly, Mir, M., 1991, 254 pp.