Arithmetic properties of values at polyadic Liouville points of Euler-type series with polyadic Liouville parameter
Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 304-312.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study infinite linear independence of polyadic numbers $$ f_{0}(\lambda)=\sum_{n=0}^\infty (\lambda)_{n}\lambda^{n}, f_{1}(\lambda)=\sum_{n=0}^\infty (\lambda +1)_{n}\lambda^{n},$$ where $ \lambda $ is a certain polyadic Liouville number. The series considered converge in any field $ \mathbb{\mathrm{Q}}_p $. Here $(\gamma)_{n}$ denotes Pochhammer symbol, i.e. $(\gamma)_{0}=1$ , and for $n\geq 1$ we have$ (\gamma)_{n}=\gamma(\gamma+1)\dots(\gamma+n-1)$. The result extends the previous author's result on the polyadic numbers $$ f_{0}(1)=\sum_{n=0}^\infty (\lambda)_{n}, f_{1}(1)=\sum_{n=0}^\infty (\lambda +1)_{n}.$$ The values of generalized hypergeometric series are the subject of numerous studies. If the parameters of the series are rational numbers, then they come either in the class of $E$ (if these series are entire functions) or the class of $G$ functions (if they have a finite non-zero radius of convergence) or to the class of $F-$ series ( in the case of zero radius of convergence in the field of complex numbers, however, they converge in the fields of $p-$ adic numbers). In all these cases, the Siegel-Shidlovsky method and its generalizations are applicable. If the parameters of the series contain algebraic irrational numbers, then the study of their arithmetic properties is based on the Hermite-Pade approximations. In this case, the parameter is a transcendental number. It should be noted that earlier A. I. Galochkin proved the algebraic independence of the values of $E - $functions at a point that is a real Liouville number. We also mention the published works of E. Yu. Yudenkova on the values of $F - $ series in polyadic Liouville points. We especially note that in this paper we consider the values in the polyadic transcendental point of hypergeometric series, the parameter of which is the polyadic transcendental (Liouville) number. Note that earlier A.I. Galochkin proved the algebraic independence of values of $E-$functions at points which are real Liouville numbers. We also mention submitted papers (E.Yu.Yudenkova) about the arithmetic properties of values of $F-$series at polyadic Liouville numbers. It should be specially mentioned that here we study the values of hypergeometric series with a parameter which is a polyadic Liouville number.
Keywords: polyadic Liouville number, infinite linear independence.
@article{CHEB_2021_22_2_a17,
     author = {V. G. Chirskii},
     title = {Arithmetic properties of values at polyadic {Liouville} points of {Euler-type} series with polyadic {Liouville} parameter},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {304--312},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a17/}
}
TY  - JOUR
AU  - V. G. Chirskii
TI  - Arithmetic properties of values at polyadic Liouville points of Euler-type series with polyadic Liouville parameter
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 304
EP  - 312
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a17/
LA  - ru
ID  - CHEB_2021_22_2_a17
ER  - 
%0 Journal Article
%A V. G. Chirskii
%T Arithmetic properties of values at polyadic Liouville points of Euler-type series with polyadic Liouville parameter
%J Čebyševskij sbornik
%D 2021
%P 304-312
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a17/
%G ru
%F CHEB_2021_22_2_a17
V. G. Chirskii. Arithmetic properties of values at polyadic Liouville points of Euler-type series with polyadic Liouville parameter. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 304-312. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a17/

[1] Andrei B. Shidlovskii, Transcendental Numbers, W. de Gruyter, Berlin–New York, 1989, 467 pp. | MR | MR

[2] Salikhov V. Kh., “Kriterii algebraicheskoi nezavisimosti odnogo klassa gipergeometricheskikh $E$–funktsii”, Matem. sb., 181:2 (1990), 189–211

[3] Salikhov V. Kh., “Neprivodimost gipergeometricheskikh uravnenii i algebraicheskaya nezavisimost znachenii $E$ – funktsii”, Acta Arithm., 53 (1990), 453–471 | DOI | MR | Zbl

[4] Beukers F., Brownawell W. D., Heckman G., “Siegel normality”, Ann. Math., 127 (1988), 279–308 | DOI | MR | Zbl

[5] Chudnovsky G. V., “On application of Diophantine approximations”, Proc. Natl. Acad. Sci. USA, 81 (1985), 7261–7265 | DOI | MR

[6] Bombieri E., “On $G$-functions”, Recent Progress in Analytic Number Theory, v. 2, Academic Press, London, 1981, 1–68 | MR

[7] Bertrand D., Chiskii V., Yebbou J., “Effective estimates for global relations on Euler-type series”, Ann. Fac. Sci. Toulouse, 13:2 (2004), 241–260 | DOI | MR | Zbl

[8] Matveev V. Yu., “Algebraicheskaya nezavisimost nekotorykh pochti poliadicheskikh ryadov”, Chebyshevskii sbornik, 17:3, 156–167 | MR

[9] Chiskii V. G., “Arithmetic properties of polyadic series with periodic coefficients”, Dokl. Math., 90:3, 766–768 | DOI | DOI | MR

[10] V.G. Chiskii, “Arithmetic properties of generalized hypergeometric $F$–series”, Dokl. Math., 98:3 (2018), 589–591 | DOI | MR | MR

[11] Matala-aho T., Zudilin W., “Euler factorial series and global relations”, J. Number Theory, 186 (2018), 202–210 | DOI | MR | Zbl

[12] Ernvall-Hytonen A. M., Matala-aho T., Seppela L., Euler's divergent series in arithmetic progressions, 11 Sep 2018, arXiv: 1809.03859 | MR

[13] Chirskii V. G., “Product Formula, Global Relations and Polyadic Integers”, Russ. J. Math. Phys., 26:3 (2019), 286–305 | DOI | MR | Zbl

[14] Chirskii V. G., “Arithmetic properties of generalized hypergeometric $F$– series”, Russ. J. Math. Phys., 27:2 (2020), 175–184 | DOI | MR | Zbl

[15] Chiskii V. G., “Arithmetic Properties of Euler-Type Series with a Liouvillean Polyadic Parameter”, Dokl. Math., 102:2 (2020), 412–413 | DOI | MR

[16] Galochkin A. I., “Ob algebraicheskoi nezavisimosti znachenii E-funktsii v nekotorykh transtsendentnykh tochkakh”, Vestnik MGU. Ser. 1, matem., mekhan., 1970, no. 5, 58–63 | Zbl

[17] Nesterenko Yu. V., “Priblizheniya Ermita-Pade obobschennykh gipergeometricheskikh funktsii”, Matem. sb., 185:3 (1994), 39–72 | Zbl