Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_2_a16, author = {A. P. Fot and N. N. Dobrovol'skii and I. Yu. Rebrova and N. M. Dobrovol'skii and A. S. Podolyan}, title = {On a linear {Diophantine} equation and its applications}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {288--303}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a16/} }
TY - JOUR AU - A. P. Fot AU - N. N. Dobrovol'skii AU - I. Yu. Rebrova AU - N. M. Dobrovol'skii AU - A. S. Podolyan TI - On a linear Diophantine equation and its applications JO - Čebyševskij sbornik PY - 2021 SP - 288 EP - 303 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a16/ LA - ru ID - CHEB_2021_22_2_a16 ER -
%0 Journal Article %A A. P. Fot %A N. N. Dobrovol'skii %A I. Yu. Rebrova %A N. M. Dobrovol'skii %A A. S. Podolyan %T On a linear Diophantine equation and its applications %J Čebyševskij sbornik %D 2021 %P 288-303 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a16/ %G ru %F CHEB_2021_22_2_a16
A. P. Fot; N. N. Dobrovol'skii; I. Yu. Rebrova; N. M. Dobrovol'skii; A. S. Podolyan. On a linear Diophantine equation and its applications. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 288-303. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a16/
[1] Borevich Z.I., Shafarevich I.R., Teoriya chisel, Nauka, M., 1985
[2] Vinogradov I. M., Osnovy teorii chisel, Nauka, M., 1982 | MR
[3] GOST 9038-90. Mery dliny kontsevye ploskoparallelnye. Tekhnicheskie usloviya (s Izmeneniem No 1), UTVERZhDEN I VVEDEN V DEISTVIE Postanovleniem Gosudarstvennogo komiteta SSSR po upravleniyu kachestvom produktsii i standartam ot 25.01.90 No 86
[4] Kassels Dzh. V. S., Vvedenie v geometriyu chisel, Mir, M., 1965, 420 pp.
[5] G.G. Malinetskii, Matematicheskie osnovy sinergetiki, URSS, M., 2009
[6] A. A. Mullabaev, A. P. Fot, “Optimizatsiya naborov kontsevykh mer i schupov”, VESTNIK OGU, 2005, no. 4, 152–153
[7] A.P. Fot, R.M. Dzhalmukhamedov, Programma «Raschet nabora kontsevykh mer i ego kharakteristik po universalnoi funktsii i otnositelnoi metalloemkosti», Sv.-vo gos. reg. progr. dlya EVM No 2016611967. Rossiiskaya Federatsiya, pravoobladatel - federalnoe gosudarstvennoe byudzhetnoe obrazovatelnoe uchrezhdenie vysshego professionalnogo obrazovaniya «Orenburgskii gosudarstvennyi universitet», No 2015663252, data postupleniya 28.12.2015 g., data registr. v Reestre programm dlya EVM 15.02.2016 g., Opubl. 20.03.2016 g.
[8] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR
[9] M. Yu. Tarova, A. P. Fot, Universalnyi nabor kontsevykh mer, Patent RU No 2629686 S1 MPK G01B5/02 (2006.01), No 2016107665, Zayavleno 02.03.2016, Reshenie o vydache patenta ot 14.07.2017, Opubl. 31.08.2017, Byul. No 2, Aktsionernoe obschestvo “Voenno-promyshlennaya korporatsiya ‘`Nauchno-proizvodstvennoe ob’edinenie mashinostroeniya”
[10] Khinchin A. Ya., Tsepnye drobi, Kharkov, 1956
[11] A. A. Mullabaev, A. P. Fot, S. I. Pavlov, “Ob ispolzovanii matematicheskogo modelirovaniya v nekotorykh zadachakh mashinostroeniya”, Vestnik OGU, 2006, no. 2, 75–82
[12] B.V. Kryzhanovsky, L.B. Litinskii, A.L. Mikaelian, “Vector-neuron models of associative memory”, Proc. of Int. Joint Conference on Neural Networks, IJCNN-04 (Budapest, 2004), 909–1004 | MR
[13] B.V. Kryzhanovsky, B.M. Magomedov, A.L. Mikaelian, “A Domain model of neural network”, Doklady Mathematics, 71 (2005), 310–314 | Zbl
[14] TESA Technology, https://technobearing.ru/d/877366/d/tesa2014-2015-compressed-206-221.pdf
[15] Mitutoyo Corporation, https://www.mitutoyo.co.jp/eng/products/gaugeblock/gaugeblock.html