On a linear Diophantine equation and its applications
Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 288-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers a linear Diophantine equation with six variables. Its solution is constructed as a shifted incomplete five-dimensional integer lattice in a six-dimensional space. The basis of this lattice is constructed. An algorithmic solution for finding all its solutions from a given six-dimensional integer parallelepiped is given. For this purpose, a new basis for this incomplete five-dimensional lattice was constructed, which allowed us to write an effective program for finding all sets that satisfy a given Diophantine equation and belong to a given rectangular parallelepiped. As a result of the proposed algorithm implemented in the Mathcad system, it was shown that out of the total number of 10182290760 integer points lying in a given parallelepiped, only 7822045 satisfy the given Diophantine equation. Thus, the total search was reduced by 1301.7 times. The article considers the relationship between shifted lattices and integer programming problems. It is shown how it is possible to construct bases of incomplete integer lattices, which make it possible to reduce a complete search over the points of an s-dimensional rectangular parallelepiped to a search over the points of a shifted incomplete lattice lying in this parallelepiped. Some applications of this Diophantine equation in technical issues related to the solution of an applied mechanical engineering problem in the field of measuring tool design, in particular, sets of end length measures, are considered. The article reflects the iterative nature of the refinement of the mathematical model of this applied problem. After the first model adjustment, the number of sets decreased by another 193.237 times, and after the second model adjustment, the total reduction of sets suitable for subsequent optimization became 581114.6 times. In conclusion, the directions of further research and possible application of the ideas of Hopfield neural networks and machine learning for the implementation of the selection of optimal solutions are indicated.
Keywords: incomplete integer lattices, linear diophantine equations, measuring tool, a set of plane-parallel end-length measures.
@article{CHEB_2021_22_2_a16,
     author = {A. P. Fot and N. N. Dobrovol'skii and I. Yu. Rebrova and N. M. Dobrovol'skii and A. S. Podolyan},
     title = {On a linear {Diophantine} equation and its applications},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {288--303},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a16/}
}
TY  - JOUR
AU  - A. P. Fot
AU  - N. N. Dobrovol'skii
AU  - I. Yu. Rebrova
AU  - N. M. Dobrovol'skii
AU  - A. S. Podolyan
TI  - On a linear Diophantine equation and its applications
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 288
EP  - 303
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a16/
LA  - ru
ID  - CHEB_2021_22_2_a16
ER  - 
%0 Journal Article
%A A. P. Fot
%A N. N. Dobrovol'skii
%A I. Yu. Rebrova
%A N. M. Dobrovol'skii
%A A. S. Podolyan
%T On a linear Diophantine equation and its applications
%J Čebyševskij sbornik
%D 2021
%P 288-303
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a16/
%G ru
%F CHEB_2021_22_2_a16
A. P. Fot; N. N. Dobrovol'skii; I. Yu. Rebrova; N. M. Dobrovol'skii; A. S. Podolyan. On a linear Diophantine equation and its applications. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 288-303. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a16/

[1] Borevich Z.I., Shafarevich I.R., Teoriya chisel, Nauka, M., 1985

[2] Vinogradov I. M., Osnovy teorii chisel, Nauka, M., 1982 | MR

[3] GOST 9038-90. Mery dliny kontsevye ploskoparallelnye. Tekhnicheskie usloviya (s Izmeneniem No 1), UTVERZhDEN I VVEDEN V DEISTVIE Postanovleniem Gosudarstvennogo komiteta SSSR po upravleniyu kachestvom produktsii i standartam ot 25.01.90 No 86

[4] Kassels Dzh. V. S., Vvedenie v geometriyu chisel, Mir, M., 1965, 420 pp.

[5] G.G. Malinetskii, Matematicheskie osnovy sinergetiki, URSS, M., 2009

[6] A. A. Mullabaev, A. P. Fot, “Optimizatsiya naborov kontsevykh mer i schupov”, VESTNIK OGU, 2005, no. 4, 152–153

[7] A.P. Fot, R.M. Dzhalmukhamedov, Programma «Raschet nabora kontsevykh mer i ego kharakteristik po universalnoi funktsii i otnositelnoi metalloemkosti», Sv.-vo gos. reg. progr. dlya EVM No 2016611967. Rossiiskaya Federatsiya, pravoobladatel - federalnoe gosudarstvennoe byudzhetnoe obrazovatelnoe uchrezhdenie vysshego professionalnogo obrazovaniya «Orenburgskii gosudarstvennyi universitet», No 2015663252, data postupleniya 28.12.2015 g., data registr. v Reestre programm dlya EVM 15.02.2016 g., Opubl. 20.03.2016 g.

[8] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR

[9] M. Yu. Tarova, A. P. Fot, Universalnyi nabor kontsevykh mer, Patent RU No 2629686 S1 MPK G01B5/02 (2006.01), No 2016107665, Zayavleno 02.03.2016, Reshenie o vydache patenta ot 14.07.2017, Opubl. 31.08.2017, Byul. No 2, Aktsionernoe obschestvo “Voenno-promyshlennaya korporatsiya ‘`Nauchno-proizvodstvennoe ob’edinenie mashinostroeniya”

[10] Khinchin A. Ya., Tsepnye drobi, Kharkov, 1956

[11] A. A. Mullabaev, A. P. Fot, S. I. Pavlov, “Ob ispolzovanii matematicheskogo modelirovaniya v nekotorykh zadachakh mashinostroeniya”, Vestnik OGU, 2006, no. 2, 75–82

[12] B.V. Kryzhanovsky, L.B. Litinskii, A.L. Mikaelian, “Vector-neuron models of associative memory”, Proc. of Int. Joint Conference on Neural Networks, IJCNN-04 (Budapest, 2004), 909–1004 | MR

[13] B.V. Kryzhanovsky, B.M. Magomedov, A.L. Mikaelian, “A Domain model of neural network”, Doklady Mathematics, 71 (2005), 310–314 | Zbl

[14] TESA Technology, https://technobearing.ru/d/877366/d/tesa2014-2015-compressed-206-221.pdf

[15] Mitutoyo Corporation, https://www.mitutoyo.co.jp/eng/products/gaugeblock/gaugeblock.html