The subdirect irreducibility and the atoms of congruence lattices of algebras with one operator and the symmetric main operation
Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 257-270.

Voir la notice de l'article provenant de la source Math-Net.Ru

In that paper we study atoms of congruence lattices and subdirectly irreducibility of algebras with one operator and the main symmetric operation. A ternary operation $d(x,y,z)$ satisfying identities $d(x, y, y) = d(y, y, x) = d(y, x, y) = x$ is called a minority operation. The symmetric operation is a minority operation defined by specific way. An algebra $A$ is called subdirectly irreducible if $A$ has the smallest nonzero congruence. An algebra with operators is an universal algebra whose signature consists of two nonempty non-intersectional parts: the main one which can contain arbitrary operations, and the additional one consisting of operators. The operators are unary operations that act as endomorphisms with respect to the main operations, i.e., one that permutable with main operations. A lattice $L$ with zero is called atomic if any element of $L$ contains some atom. A lattice $L$ with zero is called atomistic if any nonzero element of $L$ is a join of some atom set. It shown that congruence lattices of algebras with one operator and main symmetric operation are atomic. The structure of atoms in the congruence lattices of algebras in given class is described. The full describe of subdirectly irreducible algebras and of algebras with an atomistic congruence lattice in given class is obtained.
Keywords: subdirectly irreducible algebra, congruence lattice, atom of congruence lattice, atomic lattice, algebra with operators.
@article{CHEB_2021_22_2_a14,
     author = {V. L. Usoltsev},
     title = {The subdirect irreducibility and the atoms of congruence lattices of algebras with one operator and the symmetric main operation},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {257--270},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a14/}
}
TY  - JOUR
AU  - V. L. Usoltsev
TI  - The subdirect irreducibility and the atoms of congruence lattices of algebras with one operator and the symmetric main operation
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 257
EP  - 270
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a14/
LA  - ru
ID  - CHEB_2021_22_2_a14
ER  - 
%0 Journal Article
%A V. L. Usoltsev
%T The subdirect irreducibility and the atoms of congruence lattices of algebras with one operator and the symmetric main operation
%J Čebyševskij sbornik
%D 2021
%P 257-270
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a14/
%G ru
%F CHEB_2021_22_2_a14
V. L. Usoltsev. The subdirect irreducibility and the atoms of congruence lattices of algebras with one operator and the symmetric main operation. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 257-270. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a14/

[1] Smirnov D. M., Mnogoobraziya algebr, VO "Nauka", Sibirskaya izdatelskaya firma, Novosibirsk, 1992, 205 pp.

[2] McKenzie R., Stanovský D., “Every quasigroup is isomorphic to a subdirectly irreducible quasigroup modulo its monolith”, Acta Sci. Math. (Szeged), 72 (2006), 59–64 | MR | Zbl

[3] Wenzel G. H., “Subdirect irreducibility and equational compactness in unary algebras $\langle A; f \rangle$”, Arch. Math. (Basel), 21 (1970), 256–264 | DOI | MR | Zbl

[4] Płonka J., “Subdirectly irreducible groupoids in some varieties”, Commentationes Mathematicae Universitatis Carolinae, 24:4 (1983), 631–645 | MR

[5] Garcia P., Esteva F., “On Ockham Algebras: Congruence Lattices and Subdirectly Irreducible Algebras”, Studia Logica, 55 (1995), 319–346 | DOI | MR | Zbl

[6] Celani S. A., “Simple and subdirectly irreducibles bounded distributive lattices with unary operators”, International Journal of Mathematics and Mathematical Sciences, 2006, 21835, 20 pp. | MR | Zbl

[7] Ésik Z., Imreh B., “Subdirectly irreducible commutative automata”, Acta Cybernetica, 5:3 (1981), 251–260 | MR | Zbl

[8] Chajda I., Länger H., “Subdirectly irreducible commutative multiplicatively idempotent semirings”, Algebra Universalis, 76 (2016), 327–337 | DOI | MR | Zbl

[9] Kozhukhov I. B., Khaliullina A. R., “Kharakterizatsiya podpryamo nerazlozhimykh poligonov”, Prikladnaya diskretnaya matematika, 2015, no. 1(27), 5–16

[10] Berman J., “On the congruence lattices of unary algebras”, Proc. Amer. Math. Soc., 36 (1972), 34–38 | DOI | MR | Zbl

[11] Loi N. V., Wiegandt R., “Subdirect irreducibility of algebras and acts with an additional unary operation”, Miskolc Mathematical Notes, 6:2 (2005), 217–224 | DOI | MR | Zbl

[12] Usoltsev V. L., “O podpryamo nerazlozhimykh unarakh s maltsevskoi operatsiei”, Izv. Volgogradskogo gos. ped. un-ta, ser. “Est. i fiz.-mat. nauki”, 2005, no. 4(13), 17–24

[13] Szendrei A., Clones in universal algebra, Les presses de l'Université de Montréal, Montréal, 1986, 166 pp. | MR | Zbl

[14] Kartashov V. K., “Ob unarakh s maltsevskoi operatsiei”, Universalnaya algebra i ee prilozheniya, Tez. dokl. mezhd. seminara, posv. pamyati prof. L. A. Skornyakova, Peremena, Volgograd, 1999, 31–32

[15] Usoltsev V. L., “Unary s ternarnoi maltsevskoi operatsiei”, Uspekhi matematicheskikh nauk, 63:5 (2008), 201–202 | DOI | MR | Zbl

[16] Usoltsev V. L., “Stroenie atomov v reshetkakh kongruentsii algebr odnogo klassa unarov s maltsevskoi operatsiei”, Sovremennye problemy gumanitarnykh i estestvennykh nauk, Mat. XVIII Mezhd. nauchno-prakt. konf. (26-27 marta, 2014), Spetskniga, M., 2014, 39–44

[17] Usoltsev V. L., “Svobodnye algebry mnogoobraziya unarov s maltsevskoi operatsiei $p$, zadannogo tozhdestvom $p(x,y,x)=y$”, Chebyshevskii sb., 12:2(38) (2011), 127–134 | MR | Zbl

[18] Maróti M., McKenzie R., “Existence theorems for weakly symmetric operations”, Algebra Universalis, 59:3-4 (2008), 463–489 | DOI | MR | Zbl

[19] Bulatov A., Krokhin A., Jeavons P., “The complexity of constraint satisfaction: An algebraic approach”, Structural Theory of Automata, Semigroups and Universal Algebra, Springer-Verlag, Berlin, 2005, 181–213 | MR

[20] Usoltsev V. L., “O polinomialno polnykh i abelevykh unarakh s maltsevskoi operatsiei”, Uch. zap. Orlovskogo gos. un-ta, 6(50):2 (2012), 229–236

[21] Usoltsev V. L., “O gamiltonovykh ternarnykh algebrakh s operatorami”, Chebyshevskii sb., 15:3(51) (2014), 100–113 | MR | Zbl

[22] Usoltsev V. L., “O reshetkakh kongruentsii algebr s odnim operatorom i osnovnoi operatsiei pochti edinoglasiya”, Nauchno-tekhn. vestnik Povolzhya, 2016, no. 2, 28–30

[23] Lata A. N., “O kongruents-kogerentnykh algebrakh Risa i algebrakh s operatorom”, Chebyshevskii sb., 18:2(62) (2017), 154–172 | DOI | MR | Zbl

[24] Usoltsev V. L., “Simple and pseudosimple algebras with operators”, Journal of Mathematical Sciences, 164:2 (2010), 281–293 | DOI | MR | Zbl