Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_2_a11, author = {B. Mhanna}, title = {Matrix of relative forest accessibility of the oriented path and the oriented cycle}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {183--201}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a11/} }
B. Mhanna. Matrix of relative forest accessibility of the oriented path and the oriented cycle. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 183-201. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a11/
[1] Deza E.I., Mkhanna B., “O spetsialnykh svoistvakh nekotorykh kvazimetrik”, Chebyshevskii sbornik, 21:1 (2020), 145–164 | DOI | MR | Zbl
[2] Chebotarev P.Yu., Agaev R.P., Matrichnaya teorema o lesakh i laplasovskie matritsy orgrafov, LAP LAMBERT Academic publishing, M., 2011
[3] Basin S.L., “The appearance of Fibonacci numbers and the Q matrix in electrical network theory”, Math. Magazine, 36 (1963), 84–97 | DOI | MR | Zbl
[4] Boesch F. T., Prodinger H., “Spanning tree formulas and Chebyshev polynomials”, Graphs Combin., 2 (1986), 191–200 | DOI | MR | Zbl
[5] Chaiken S., “A combinatorial proof of the all minors matrix tree theorem”, SIAM J. Algebraic Discrete Methods, 3 (1982), 319–329 | DOI | MR | Zbl
[6] Chebotarev P. Y., Shamis E. V., “The matrix-forest theorem and measuring relations in small social groups”, Automat. Remote Control, 58 (1997), 1505–1514 | MR | Zbl
[7] Chebotarev P., “Spanning forests and the golden ratio”, Discrete Applied Mathematics, 156 (2008), 813–821 | DOI | MR | Zbl
[8] Chebotarev P., Deza E., “Hitting time quasi-metric and its forest representation”, Optimization Letters, 14 (2020), 291–307 | DOI | MR | Zbl
[9] Chebotarev P., Agaev R., “Forest matrices around the Laplacian matrix”, Linear Algebra and its Applications, 356 (2002), 253–274 | DOI | MR | Zbl
[10] Chebotarev P.Y., Shamis E.V., “On proximity measures for graph vertices”, Automation and Remote Control, 59 (1998), 1443–1459 | MR | Zbl
[11] Hilton A. J. W., “Spanning trees and Fibonacci and Lucas numbers”, Fibonacci Quart, 12 (1974), 259–262 | MR | Zbl
[12] Koshy T., Fibonacci and Lucas Numbers, Wiley-Interscience, New York, 2001 | Zbl
[13] Merris R., “Doubly stochastic graph matrices”, Publikacije Elektrotehnickog Fakulteta Univerzitet U Beogradu. Serija. Matematika, 8 (1997), 64–71 | MR | Zbl
[14] Merris R., “Doubly stochastic graph matrices II”, Linear and Multilinear Algebra, 45 (1998), 275–285 | DOI | MR | Zbl
[15] Mowery V. O., “Fibonacci numbers and Tchebycheff polynomials in ladder networks”, IRE Trans. Circuit Theory, 8 (1961), 167–168 | DOI
[16] Myers B. R., “Number of spanning trees in a wheel”, IEEE Trans. Circuit Theory, 18 (1971), 280–282 | DOI
[17] Zhang X. D., “A note on doubly stochastic graph matrices”, Linear Algebra Appl, 407 (2005), 196–200 | DOI | MR | Zbl
[18] Zhang X. D., Wu J. X., “Doubly stochastic matrices of trees”, Appl. Math. Lett., 18 (2005), 339–343 | DOI | MR | Zbl
[19] Zhang Y., Yong X., Golin M.J., “Chebyshev polynomials and spanning tree formulas for circulant and related graphs”, Discrete Math., 298 (2005), 334–364 | DOI | MR | Zbl