Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_2_a10, author = {F. M. Malyshev}, title = {Completion of the proof of {Brunn's} theorem by elementary means}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {160--182}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a10/} }
F. M. Malyshev. Completion of the proof of Brunn's theorem by elementary means. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 160-182. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a10/
[1] Burago Yu. D., Zalgaller V. A., Geometricheskie neravenstva, Nauka, L., 1980, 288 pp. | MR
[2] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987, 760 pp. | MR
[3] Buldygin V. V., Kharazishvili A. B., Neravenstvo Brunna – Minkovskogo i ego prilozheniya, Naukova Dumka, Kiev, 1985, 200 pp. | MR
[4] Gardner R. J., “The Brunn–Minkowski inequality”, Bulletin (New Series) of the American Mathematical Society, 39:3 (2002), 355–405 | DOI | MR | Zbl
[5] Brunn H., Uber Ovale und Eiflachen, Inag. Diss., Munchen, 1887, 86 pp.
[6] Delone B. N., “Dokazatelstvo neravenstva Brunna - Minkovskogo”, Uspekhi matematicheskikh nauk, 1936, no. 2, 39–46 | Zbl
[7] Minkowski H., Geometrie der Zahlen, Leipzig-Berlin, 1910, 278 pp. ; 1896 | MR
[8] Khadviger G., Lektsii ob ob'eme, ploschadi poverkhnosti i izometrii, Nauka, M., 416 pp.
[9] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985, 336 pp. | MR
[10] Blyashke V., Krug i shar, Nauka, M., 1967, 232 pp.
[11] Schneider R., Convex Bodies: The Brunn–Minkowski theory, Encyclopedia of Mathematics and Its applications, 151, Second expanded edition, Cambridge University Press, Cambridge, 2013, xvii+736 pp. | MR
[12] Barthe F., “The Brunn–Minkowski theorem and related geometric and functional inequalities”, Proc. International Congress Math. (Madrid, Spain, 2006), 1529–1546 | MR | Zbl
[13] Ball K., “An Elementary Introduction to Monotone Transportation”, LNM, 1850, 2004, 41–52 | MR | Zbl
[14] Aleksandrov A. D., Vypuklye mnogogranniki, GITTL, M.–L., 1950, 428 pp. | MR
[15] Delone B. N., “German Minkovskii”, Uspekhi matematicheskikh nauk, 1936, no. 2, 32–38
[16] Bollobas S., Leader I., “Sums in the grid”, Discrete Math., 1996, no. 6, 31–48 | DOI | MR | Zbl
[17] Gardner R. J., Gronchi P., “A Brunn–Minkowski inequality for the integer lattice”, Trans. Amer. Math. Soc., 2001, no. 353, 3995–4024 | DOI | MR | Zbl
[18] Lv S., “Dual Brunn–Minkowski inequality for volume differences”, Geom. Dedicata, 145 (2010), 169–180 | DOI | MR | Zbl
[19] Salani P., “Convexity of solutions and Brunn–Minkowski inequalities for Hessian equations in R3”, Andvances in Math., 229:3 (2011), 1924–1948 | DOI | MR
[20] Bobkov S. G., Madiman M., “Reverse Brunn–Minkowski and reverse entopy power inequalities for convex measures”, Journal of Func. Anal., 2012, no. 7, 3309–3339 | DOI | MR | Zbl
[21] Lutwak E., Boröczky K. J., Yang D., Zhang G., “The log–Brunn–Minkowski inequality”, Advances in Math., 2012, no. 3–4, 1974–1997 | MR | Zbl
[22] Gardner R. J., Hug D., Weil W., “The Orlicz–Brunn–Minkowski theory: A general framework, additions, and inequalities”, J. Diff. Geom., 2014, no. 3, 427–476 | MR | Zbl
[23] Berndtsson B., “A Rrunn–Minkowski type inequalities for Fano manifolds and some uniqueness theorems in Kahler geometry”, Inventiones math., 200:1 (2015), 149–200 | DOI | MR | Zbl
[24] Timergaliev B. S., “Generalization of the Brunn–Vinkowski inequalitybin the Form of Hadwiger for Power Moments”, Lobachevskii J. Math., 37:6 (2016), 794–806 | DOI | MR | Zbl
[25] Belousov E. G., Vvedenie v vypuklyi analiz i tselochislennoe programmirovanie, MGU, M., 1977, 196 pp. | MR
[26] Geometriya chisel, Nauka, M., 2008, 716 pp.
[27] Aigner M., Tsigler G., Dokazatelstva iz Knigi. Luchshie dokazatelstva so vremen Evklida do nashikh dnei, Mir, M., 2006, 256 pp.
[28] Malyshev F. M., “Elementarnoe dokazatelstvo teoremy Brunna–Minkovskogo”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii, Materialy XVII Mezhdunarodnoi konferentsii, posvyaschennoi stoletiyu so dnya rozhdeniya professora N.I. Feldmana i devyanostoletiyu so dnya rozhdeniya professorov A.I. Vinogradova, A.V. Malysheva i B.F. Skubenko, TGPU im. L. N. Tolstogo, Tula, 2019, 173–177
[29] Malyshev F. M., “Dokazatelstvo teoremy Brunna – Minkovskogo elementarnymi metodami”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 182, VINITI RAN, M., 2020, 70–94 | DOI
[30] Malyshev F. M., “Novoe dokazatelstvo neravenstva Brunna–Minkovskogo”, Klassicheskaya i sovremennaya geometriya, Materialy Mezhdunarodnoi konferentsii, posvyaschennoi 100-letiyu so dnya rozhdeniya V. T. Bazyleva, MPGU, M., 2019, 111–113
[31] Malyshev F. M., “Optimizatsionnaya zadacha dlya neravenstva Brunna-Minkovskogo”, Trudy MIAN, 218, Nauka, M., 1997, 262–265 | Zbl