Designing megastable systems with multidimensional lattice of chaotic attractors
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 105-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

Multistable systems and their dynamic properties are interesting topics in nonlinear dynamics. Small differences in the initial conditions (for example, due to rounding errors in numerical calculations) lead to completely different results for such dynamic systems, which makes a long-term prediction of their behavior practically impossible. This happens even if such systems are deterministic, that is, their future behavior is completely determined by the choice of initial conditions without the participation of random elements. In other words, the deterministic nature of these systems does not make them predictable. The behavior of the solutions of a dynamic system depends both on the choice of their initial conditions and on the values of the system parameters. The coexistence of several attractors, or multistability, corresponds to the simultaneous existence of more than one nontrivial attractor for the same set of system parameters. This phenomenon was discovered in almost all natural sciences, including electronics, optics, biology. In recent years, the efforts of many researchers have been aimed at creating so-called megastable systems, that is, systems that, at constant values of their parameters, have a countable number of coexisting attractors. Interest in such systems is due to a wide range of applications, for example, for hiding information in communication systems and audio encryption schemes, biomedical engineering and fuzzy control. The article proposes methods for the synthesis of megastable systems using systems in Lurie form. Megastable systems containing a $1$-D lattice of chaotic attractors can be obtained by replacing the nonlinearity in the original system with a periodic function. By replacing some variables with periodic functions in the original system of order $n$, one can construct a megastable system containing an $n$-D lattice of chaotic attractors. As one example, a fourth-order system with a $4$-D lattice of chaotic attractors is constructed for the first time. The Lyapunov exponents and Kaplan – Yorke dimension are calculated for attractors belonging to lattices.
Keywords: dynamical systems, chaos, countable number of coexisting attractors, Lyapunov exponents, Kaplan-Yorke dimension.
@article{CHEB_2021_22_1_a7,
     author = {I. M. Burkin and O. I. Kuznetsova},
     title = {Designing megastable systems with multidimensional lattice of chaotic attractors},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {105--117},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a7/}
}
TY  - JOUR
AU  - I. M. Burkin
AU  - O. I. Kuznetsova
TI  - Designing megastable systems with multidimensional lattice of chaotic attractors
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 105
EP  - 117
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a7/
LA  - ru
ID  - CHEB_2021_22_1_a7
ER  - 
%0 Journal Article
%A I. M. Burkin
%A O. I. Kuznetsova
%T Designing megastable systems with multidimensional lattice of chaotic attractors
%J Čebyševskij sbornik
%D 2021
%P 105-117
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a7/
%G ru
%F CHEB_2021_22_1_a7
I. M. Burkin; O. I. Kuznetsova. Designing megastable systems with multidimensional lattice of chaotic attractors. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 105-117. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a7/

[1] Arecchi F. T , Meucci R., Puccioni G., Tredicce J., “Experimental evidence of subharmonic bifurcations-multistability and turbulence in a Q-switched gas laser”, Phys. Rev. Lett., 49:17 (1982), 1217 | DOI

[2] Laurent M., Kellershohn N., “Multistability: a major means of differentiation and evolution in biological systems”, Trends Biochem Sci., 24:11 (1999), 418–422 | DOI

[3] Komarov A., Leblond H., Sanchez F., “Multistability and hysteresis phenomena in passively mode-locked fiber lasers”, Phys. Rev. A, 71:5 (2005), 053809 | DOI

[4] Zeng Z., Huang T., Zheng W., “Multistability of recurrent neural networks with time-varying delays and the piecewise linear activation function”, IEEE Trans Neural Netw., 21:8 (2010), 1371–1377 | DOI | MR

[5] Ying L., Huang D., Lai Y. C., “Multistability, chaos, and random signal generation in semiconductor superlattices”, Phys. Rev. E, 93:6 (2016), 062204 | DOI | MR

[6] Wang G., He S., “A quantitative study on detection and estimation of weak signals by using chaotic Duffing oscillators”, IEEE Trans. on Circuits Syst.-I: Fund. Theor. Appl., 50:7 (2003), 945–953 | DOI | MR | Zbl

[7] Liu Z., Zhu X. H., Hu W., Jiang F., “Principles of chaotic signal Radar”, Int. J. Bifurcation and Chaos, 17:5 (2007), 1735 | DOI | Zbl

[8] Guan Z. H., Huang F., Guan W., “Chaos-based image encryption algorithm”, Phys. Lett. A, 346:1-3 (2005), 153–157 | DOI | Zbl

[9] Gao T., Chen Z., “A new image encryption algorithm based on hyper-chaos”, Phys. Lett. A, 372:4 (2008), 394–400 | DOI | MR | Zbl

[10] Xie E. Y., Li C., Yu S., Lü J., “On the cryptanalysis of Fridrich's chaotic image encryption scheme”, Signal processing, 132 (2017), 150–154 | DOI

[11] Wang S., Kuang J., Li J., Luo Y., Lu H., Hu G., “Chaos-based secure communications in a large community”, Phys. Rev. E, 66 (2012), 065202 | DOI

[12] Li C., Thio W. J.-C., Sprott J. C, Iu H. H. C., Xu Y., “Constructing infinitely many attractors in a programmable chaotic circuit”, IEEE Access, 6 (2018), 29003–29012 | DOI

[13] Li C., Sprott J. C., Hu W., Xu Y., “Infinite multistability in a self-reproducing chaotic system”, Int. J. Bifurc. Chaos, 27:10 (2017), 1750160 | DOI | MR | Zbl

[14] Lai Q., Chen S., “Generating multiple chaotic attractors from Sprott B system”, Int. J. Bifurcation Chaos, 26:11 (2016), 1650177 | DOI | MR | Zbl

[15] Zhang X., Chen G., “Constructing an autonomous system with infinitely many chaotic attractors”, Chaos, 27:7 (2017), 071101 | DOI | MR | Zbl

[16] Sprott J. C., Jafari S., Abdul J. M. K., Kapitaniak T., “Megastability: Coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatially-periodic damping”, Eur. Phys. J. Special Topics, 226 (2017), 1979–1985 | DOI

[17] Burkin I. M., Kuznetsova O. I., “On some methods for generating extremely multistable systems”, J. Phys.: Conf. Ser., 1368 (2019), 042050 | DOI

[18] Burkin I. M., Kuznetsova O. I., “Generirovanie ekstremalno multistabilnykh sistem na osnove sistem v forme Lure”, Vestnik SPbGU, Matematika, Mekhanika, Astronomiya, 6:4(64) (2019), 555–564

[19] Leonov G. A., Burkin I. M., Shepeljavyi A.I., Frequency Methods in Oscillation Theory, Kluwer Academic Publishers, 1996, 404 pp. | MR | Zbl

[20] Chua L. O., Komuro M., Matsumoto T., “The Double Scroll Family”, IEEE Transactions on Circuits Systems, CAS-33:11 (1986), 1073–1118 | MR

[21] Bragin V. O., Vagaitsev V. I., Kuznetsov N. V., Leonov G. A., “Algoritmy poiska skrytykh kolebanii v nelineinykh sistemakh. Problemy Aizermana, Kalmana i tsepi Chua”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2011, no. 4, 3–36 | Zbl

[22] Burkin I. M., “The Buffer Phenomenon in Multidimensional Dynamical Systems”, Diff. Equations, 38:5 (2002), 615–625 | DOI | MR | Zbl

[23] Chen C.-K., et al., “A chaotic theoretical approach to ECG-based identity recognition [application notes]”, IEEE Computational Intelligence Magazine, 9:1 (2014), 53–63 | DOI

[24] Wu Z.-G., et al., “Sampled-data fuzzy control of chaotic systems based on a T-S fuzzy model”, IEEE Transactions on Fuzzy Systems, 22:1 (2014), 153–163 | DOI