A remark on a product of two formational tcc-subgroups
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 495-501

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $A$ of a group $G$ is called tcc-subgroup in $G$, if there is a subgroup $T$ of $G$ such that $G=AT$ and for any $X\le A$ and $Y\le T$ there exists an element $u\in \langle X,Y\rangle $ such that $XY^u\leq G$. The notation $H\le G $ means that $H$ is a subgroup of a group $G$. In this paper we consider a group $G=AB$ such that $A$ and $B$ are tcc-subgroups in $G$. We prove that $G$ belongs to $\mathfrak F$, when $A$ and $B$ belong to $\mathfrak F$ and $\mathfrak F$ is a saturated formation such that $\mathfrak U \subseteq \mathfrak F$. Here $\mathfrak U$ is the formation of all supersoluble groups.
Keywords: supersoluble group, totally permutable product, saturated formation, tcc-permutable product, tcc-subgroup.
@article{CHEB_2021_22_1_a34,
     author = {A. A. Trofimuk},
     title = {A remark on a product of two formational tcc-subgroups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {495--501},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a34/}
}
TY  - JOUR
AU  - A. A. Trofimuk
TI  - A remark on a product of two formational tcc-subgroups
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 495
EP  - 501
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a34/
LA  - ru
ID  - CHEB_2021_22_1_a34
ER  - 
%0 Journal Article
%A A. A. Trofimuk
%T A remark on a product of two formational tcc-subgroups
%J Čebyševskij sbornik
%D 2021
%P 495-501
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a34/
%G ru
%F CHEB_2021_22_1_a34
A. A. Trofimuk. A remark on a product of two formational tcc-subgroups. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 495-501. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a34/