A remark on a product of two formational tcc-subgroups
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 495-501.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $A$ of a group $G$ is called tcc-subgroup in $G$, if there is a subgroup $T$ of $G$ such that $G=AT$ and for any $X\le A$ and $Y\le T$ there exists an element $u\in \langle X,Y\rangle $ such that $XY^u\leq G$. The notation $H\le G $ means that $H$ is a subgroup of a group $G$. In this paper we consider a group $G=AB$ such that $A$ and $B$ are tcc-subgroups in $G$. We prove that $G$ belongs to $\mathfrak F$, when $A$ and $B$ belong to $\mathfrak F$ and $\mathfrak F$ is a saturated formation such that $\mathfrak U \subseteq \mathfrak F$. Here $\mathfrak U$ is the formation of all supersoluble groups.
Keywords: supersoluble group, totally permutable product, saturated formation, tcc-permutable product, tcc-subgroup.
@article{CHEB_2021_22_1_a34,
     author = {A. A. Trofimuk},
     title = {A remark on a product of two formational tcc-subgroups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {495--501},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a34/}
}
TY  - JOUR
AU  - A. A. Trofimuk
TI  - A remark on a product of two formational tcc-subgroups
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 495
EP  - 501
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a34/
LA  - ru
ID  - CHEB_2021_22_1_a34
ER  - 
%0 Journal Article
%A A. A. Trofimuk
%T A remark on a product of two formational tcc-subgroups
%J Čebyševskij sbornik
%D 2021
%P 495-501
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a34/
%G ru
%F CHEB_2021_22_1_a34
A. A. Trofimuk. A remark on a product of two formational tcc-subgroups. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 495-501. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a34/

[1] Huppert B., Endliche Gruppen, v. I, Springer, Berlin-Heidelberg-New York, 1967 | MR | Zbl

[2] Monakhov V. S., Introduction to the Theory of Finite Groups and Their Classes, Vysh. Shkola, Minsk, 2006 (in Russian)

[3] Asaad M., Shaalan A., “On the supersolubility of finite groups”, Arch. Math., 53 (1989), 318–326 | DOI | MR | Zbl

[4] Maier R., “A completeness property of certain formations”, Bull. Lond. Math. Soc., 24 (1992), 540–544 | DOI | MR | Zbl

[5] Ballester-Bolinches A., Perez-Ramos M. D., “A question of R. Maier concerning formations”, J. Algebra, 182 (1996), 738–747 | DOI | MR | Zbl

[6] Guo W., Shum K. P., Skiba A. N., “Criterions of supersolubility for products of supersoluble groups”, Publ. Math. Debrecen, 68:3-4 (2006), 433–449 | DOI | MR | Zbl

[7] Arroyo-Jorda M., Arroyo-Jorda P., “Conditional permutability of subgroups and certain classes of groups”, Journal of Algebra, 476 (2017), 395–414 | DOI | MR | Zbl

[8] Trofimuk A.A., “On the supersolubility of a group with some tcc-subgroups”, Journal of Algebra and Its Applications, 2021, 2150020, 18 pp. | DOI | MR | Zbl

[9] Ballester-Bolinches A., Esteban-Romero R., Asaad M., Products of finite groups, Walter de Gruyter, Berlin, 2010 | MR | Zbl

[10] Trofimuk A. A., “On a product of two formational tcc-subgroups”, Algebra and Discrete Mathematics, 30:2 (2020), 282–289 | DOI | MR | Zbl

[11] Ballester-Bolinches A., Ezquerro L. M., Classes of Finite Groups, Springer, Dordrecht, 2006 | MR | Zbl

[12] Doerk K., Hawkes T., Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[13] Arroyo-Jorda M., Arroyo-Jorda P., Martinez-Pastor A., Perez-Ramos M. D., “On conditional permutability and factorized groups”, Annali di Matematica Pura ed Applicata, 193 (2014), 1123–1138 | DOI | MR | Zbl

[14] Skiba A. N., “On weakly s-permutable subgroups of finite groups”, J. Algebra, 315 (2007), 192–209 | DOI | MR | Zbl

[15] Groups, Algorithms, and Programming (GAP), Version 4.11.0, , 2020 (accessed 22 september 2020) http://www.gap-system.org | MR