On the sequence of the first binary digits of the fractional parts of the values of a polynomial
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 482-487.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P(n)$ be a polynomial, having an irrational coefficient of the highest degree. A word $w$ $(w=(w_n), n\in \mathbb{N})$ consists of a sequence of first binary numbers of $\{P(n)\}$ i.e. $w_n=[2\{P(n)\}]$. Denote by $T(k)$ the number of different subwords of $w$ of length $k$ . We'll formulate the main result of this paper. Theorem. There exists a polynomial $Q(k)$, depending only on the power of the polynomial $P$, such that $T(k)=Q(k)$ for sufficiently great $k$.
Keywords: Combinatorics on words, symbolical dynamics, unipotent torus transformation, Weiyl lemma.
@article{CHEB_2021_22_1_a32,
     author = {A. Ya. Belov and G. V. Kondakov and I. V. Mitrofanov and M. M. Golafshan},
     title = {On the sequence of the first binary digits of the fractional parts of the values of a polynomial},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {482--487},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a32/}
}
TY  - JOUR
AU  - A. Ya. Belov
AU  - G. V. Kondakov
AU  - I. V. Mitrofanov
AU  - M. M. Golafshan
TI  - On the sequence of the first binary digits of the fractional parts of the values of a polynomial
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 482
EP  - 487
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a32/
LA  - ru
ID  - CHEB_2021_22_1_a32
ER  - 
%0 Journal Article
%A A. Ya. Belov
%A G. V. Kondakov
%A I. V. Mitrofanov
%A M. M. Golafshan
%T On the sequence of the first binary digits of the fractional parts of the values of a polynomial
%J Čebyševskij sbornik
%D 2021
%P 482-487
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a32/
%G ru
%F CHEB_2021_22_1_a32
A. Ya. Belov; G. V. Kondakov; I. V. Mitrofanov; M. M. Golafshan. On the sequence of the first binary digits of the fractional parts of the values of a polynomial. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 482-487. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a32/

[1] I.M. Vinogradov, “K voprosu o raspredelenii drobnykh chastei mnogochlena”, Izv. AN., ser. matem., 25 (1961), 749–754 | Zbl

[2] L. Keipers, G. Nidderreiter, Ravnomernoe raspredelenie posledovatelnostei, Nauka, M., 1985

[3] L.D. Pustylnikov, “Raspredelenie drobnykh chastei znachenii mnogochlena”, UMN, 48:4 (292) (1993), 131–166 | MR | Zbl

[4] R.N. Izmailov, A.A. Vladimirov, “Dimension of aliasing structures”, An International Journal of Systems. Applications in Computer Graphics, 17:5 (1993)

[5] M. Morse, G.A. Hedlund, “Symbolic dynamics II: Sturmian trajectories”, Amer. J. Math., 62 (1940), 1–42 | DOI | MR | Zbl

[6] H. Weyl, “Über der gleichverteilung von zahlen mod. 1”, Math. Ann., 77 (1916), 313–352 | DOI | MR