On the sequence of the first binary digits of the fractional parts of the values of a polynomial
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 482-487
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $P(n)$ be a polynomial, having an irrational coefficient of the highest degree. A word $w$ $(w=(w_n), n\in \mathbb{N})$ consists of a sequence of first binary numbers of $\{P(n)\}$ i.e. $w_n=[2\{P(n)\}]$. Denote by $T(k)$ the number of different subwords of $w$ of length $k$ . We'll formulate the main result of this paper.
Theorem. There exists a polynomial $Q(k)$, depending only on the power of the polynomial $P$, such that $T(k)=Q(k)$ for sufficiently great $k$.
Keywords:
Combinatorics on words, symbolical dynamics, unipotent torus transformation, Weiyl lemma.
@article{CHEB_2021_22_1_a32,
author = {A. Ya. Belov and G. V. Kondakov and I. V. Mitrofanov and M. M. Golafshan},
title = {On the sequence of the first binary digits of the fractional parts of the values of a polynomial},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {482--487},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a32/}
}
TY - JOUR AU - A. Ya. Belov AU - G. V. Kondakov AU - I. V. Mitrofanov AU - M. M. Golafshan TI - On the sequence of the first binary digits of the fractional parts of the values of a polynomial JO - Čebyševskij sbornik PY - 2021 SP - 482 EP - 487 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a32/ LA - ru ID - CHEB_2021_22_1_a32 ER -
%0 Journal Article %A A. Ya. Belov %A G. V. Kondakov %A I. V. Mitrofanov %A M. M. Golafshan %T On the sequence of the first binary digits of the fractional parts of the values of a polynomial %J Čebyševskij sbornik %D 2021 %P 482-487 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a32/ %G ru %F CHEB_2021_22_1_a32
A. Ya. Belov; G. V. Kondakov; I. V. Mitrofanov; M. M. Golafshan. On the sequence of the first binary digits of the fractional parts of the values of a polynomial. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 482-487. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a32/